Let $P = \{ x \in \mathbb{R}^n : Ax \leq b \}$ be a bounded, non-empty set. Formulate a linear program that computes the radius of the largest ball that can be inscribed into P.

Sol. A ball of radius r and center x is contained in P if and only if $x \in P$ and x has distance at least r from any hyperplane defining P. Hence we obtain the following linear program:

$$
\begin{align*}
\max & \quad r \\
\text{s.t.} & \quad \frac{b_i - ax}{\|a_i\|} \geq r & \forall i = 1, \ldots, m \\
& \quad Ax \leq b
\end{align*}
$$

where a_1, \ldots, a_m are the rows of A and $b = (b_1 \ldots b_m)^\top$.