Problem 1
Determine the dual program for the following linear programs:

1. \[
\begin{align*}
\text{max} & \quad 2x_1 + 3x_2 - 7x_3 \\
\text{s.t.} & \quad x_1 + 3x_2 + 2x_3 = 4 \\
& \quad x_1 + x_2 \leq 8 \\
& \quad x_1 - x_3 \geq -15 \\
& \quad x_1, x_2 \geq 0
\end{align*}
\]

2. \[
\begin{align*}
\text{min} & \quad 3x_1 + 2x_2 - 3x_3 + 4x_4 \\
\text{s.t.} & \quad 2x_1 - 2x_2 + 3x_3 + 4x_4 \leq 3 \\
& \quad x_2 + 3x_3 + 4x_4 \geq -5 \\
& \quad 2x_1 - 3x_2 - 7x_3 - 4x_4 = 2 \\
& \quad x_1 \geq 0 \\
& \quad x_4 \leq 0
\end{align*}
\]

Problem 2
In the setting of the matrix-game described in Section 5.1 of the lecture notes, show that for \(A \in \mathbb{R}^{m \times n} \), one has
\[
\max_i \min_j A(i, j) \leq \min_j \max_i A(i, j).
\]

Problem 3
Consider the following linear program \(\max \{ c^T x : Ax \leq b \} \) and its dual \(\min \{ b^T y : A^T y = c, y \geq 0 \} \). Suppose that both programs are bounded and feasible. Let \(x_0 \) and \(y_0 \) be feasible solutions of the primal, respectively the dual linear program. Show that the following are equivalent:

(i) \(x_0 \) and \(y_0 \) are optimal solutions of the primal, respectively the dual.

(ii) \(c^T x_0 = b^T y_0 \).

(iii) If a component of \(y_0 \) is positive, the corresponding inequality in \(Ax \leq b \) is satisfied by \(x_0 \) with equality.

Problem 4
For each of the following assertions, provide a proof or a counterexample.

(i) An index that has just left the basis \(B \) in the simplex algorithm cannot enter in the very next iteration.

(ii) An index that has just entered the basis \(B \) in the simplex algorithm cannot leave again in the very next iteration.
Problem 5
We define two different norms on vectors. The infinity-norm is defined by $\|y\|_\infty = \max_i |y_i|$ and the 1-norm is defined by $\|y\|_1 = \sum_i |y_i|$.

Let A be an $m \times n$ matrix and let $b \in \mathbb{R}^m$ be a vector. Consider the problem of minimizing $\|Ax-b\|_\infty$ over all $x \in \mathbb{R}^n$.

Suppose that v is the optimal value of the problem.

(a) Let $p \in \mathbb{R}^m$ be a vector satisfying $\|p\|_1 \leq 1$ and $p^T A = 0$. Show that $p^T b \leq v$.

(b) To obtain the best possible lower bound of the form considered in (a), we construct the following linear program
\[
\begin{align*}
\max & \quad p^T b \\
p^T A &= 0 \\
\sum_{i=1}^m |p_i| &\leq 1.
\end{align*}
\]

Using strong duality, show that the optimal solution of this problem is equal to v.

Problem 6
Consider the following problem. We are given $B \in \mathbb{N}$, and a set of integer points
\[S = \{ p \in \mathbb{Z}^n : 0 \leq p_i \leq B, \forall i = 1, \ldots, n \},\]
whose points are all colored blue but one, which is red. We have an oracle that, given $i \in \{1, \ldots, n\}$ and $\alpha \in \{0, \ldots, B\}$, tells us whether there exists a red point $x^* \in S$ with $x^*_i \leq \alpha$. Give an algorithm to find the red point using $O(n \log(B))$ many oracle calls.