Reduction of convex optimization problem

Recall that the Convex Optimization Problem (C.O.P) is the following:

\[
\min \ f_0(x) \\
\text{s.t.} \ f_i(x) \leq 0 \quad \forall i = 1, \ldots, m \\
x \in \mathbb{R}^n
\]

where, \(f_0, \ldots, f_m : \mathbb{R}^n \rightarrow \mathbb{R} \) are convex functions.

This can be reduced to the decision problem, i.e, decide if the following set is feasible (not empty).

\[
Q_\delta := \{x \in \mathbb{R}^n | f_i(x) \leq 0, \forall i = 1, \ldots, m \text{ and } f_0(x) \leq \delta\}
\]

Binary search

Suppose \(L_0 \leq p^* \leq U_0 \) we can find \(p^* \) (approximately) by binary search, i.e,

1. Initialise \(L = L_0, U = U_0 \)
2. Repeat
 \[
 \delta := (U - L)/2
 \]
 If \(Q_\delta \neq \emptyset \) then \(U := \delta \)
 otherwise \(L := \delta \)

After \(k \) iterations, \(L \leq p^* \leq U \) and \(U - L = (U_0 - L_0)/2^k \).

Now we need to show that we can solve the decision problem. Assume, we are given the following:

- Bounded closed convex set \(K \subseteq \mathbb{R}^n \)
- \(L > 0 : \text{vol}(K) \geq L \) (\(K \) is full-dimensional)
- \(R > 0 : K \subseteq \{x \in \mathbb{R}^n | \|x\| \leq R\} \)
We must be able to solve separation problem. The separation problem is the following:

For any \(y \in \mathbb{R}^n \) we must be able to decide whether \(y \in K \) or \(y \notin K \) and if \(y \notin K \) return an hyperplane \(c^T x = \beta \) such that \(c^T x \leq \beta \), \(\forall x \in K \) and \(c^T y > \beta \).

Definition 1. The unit ball in \(\mathbb{R}^n \) is \(B = \{ x \in \mathbb{R}^n \mid \|x\| \leq 1 \} \). Let \(f : \mathbb{R}^n \to \mathbb{R}^n : f(x) = Ax + b, A \in \mathbb{R}^{n \times n} \) regular, \(b \in \mathbb{R}^n \). Then the set

\[
E(A, b) = f(B) = \{ Ax + b \mid x \in B \}
\]

is termed an ellipsoid.

Note that \((A^{-1})^T A^{-1}\) is a positive definite, symmetric matrix.

The volume of an ellipsoid is:

\[
\text{vol}(E(A, b)) = |\text{det}(A)| \cdot \text{vol}(B) = |\text{det}(A)| \cdot \frac{1}{\pi^n} \left(\frac{2e\pi}{n} \right)^\frac{n}{2}
\]

where \(\frac{1}{\pi^n} \left(\frac{2e\pi}{n} \right)^\frac{n}{2} \) is an approximation of the volume of the unit ball.

The ellipsoid method

The goal for the *Ellipsoid method* is to find a point \(b \in K \). This is done as follows: One iteratively computes ellipsoids that always contain the set \(K \) fully, such that the volume of the ellipsoids decreases from iteration to iteration.

The initial ellipsoid \(E(A, b) \), is simply the ball of radius \(R \), i.e, \(A := RI, b = 0 \).

1. \(E(A, b) = \{ x \in \mathbb{R}^n \mid \|x\| \leq R \} \)
2. While \(\text{vol}(E(A, b)) \geq L \) Do
 3. If \(b \in K \) then RETURN \(b \)
 4. Compute separating hyperplane \(c^T x \leq \beta \)
 (i.e. \(c^T x \leq \beta \) \(\forall x \in K \) and \(c^T b > \beta \))
 5. Compute \(E(A', b') \supseteq E(A, b) \cap \{ x \mid c^T x \leq \beta \} \)
 6. Update \(E(A, b) := E(A', b') \)

In order to show that the ellipsoid method works, we must assure that \(\text{vol}(E(A', b')) \) is smaller than \(\text{vol}(E(A, b)) \).
Figure 1: Unit ball and ellipsoid $E(A', b')$

Theorem 2. For all $E(A, b) \subset \mathbb{R}^n$ and $c \in \mathbb{R}^n / \{0\}$ there is an ellipsoid

$$E(A', b') \supseteq E(A, b) \cap \{x | c^T x \leq c^T b\}$$

such that

$$\frac{\text{vol}(E(A', b'))}{\text{vol}(E(A, b))} \leq e^{-\frac{1}{2(n+1)}}$$

Without loss of generality we can suppose:

- $b = 0$ by applying a translation to the ellipsoid
- $E(A, b) = B$ by a linear transformation
- $c = (-1, 0, \ldots, 0)$ by rotation

Define

$$E := E(A', b') : = E \left(\begin{pmatrix} \frac{n}{n+1} & 0 & \cdots & 0 \\ 0 & \sqrt{\frac{n^2}{n-1}} & \cdots & 0 \\ \vdots & \vdots & \ddots & 0 \\ 0 & \cdots & 0 & \sqrt{\frac{n^2}{n-1}} \end{pmatrix}, \begin{pmatrix} \frac{1}{n+1} \\ 0 \\ \vdots \\ 0 \end{pmatrix} \right)$$

$$= \left\{ x \in \mathbb{R} \mid \|A'^{-1}(x - b)\|^2 \leq 1 \right\}$$

$$= \left\{ x \mid \left(\frac{n+1}{n}\right)^2 (x_1 - \frac{1}{n+1})^2 + \frac{n^2-1}{n^2} \sum_{i=2}^{n} x_i^2 \leq 1 \right\}$$

Lemma 3. One has $B \cap \{x | x_1 \geq 0\} \subseteq E$ and

$$\frac{\text{vol}(E)}{\text{vol}(B)} \leq e^{-\frac{1}{2(n+1)}}$$

3
Proof. Let \(x \in \mathbb{R}^n \) with \(\|x\| \leq 1 \) and \(x_1 \geq 0 \). Now we have:

\[
\|A'^{-1}(x-b)\|^2 = \left(\frac{n+1}{n} \right) \left(x_1 - \frac{1}{n+1} \right)^2 + \frac{n^2-1}{n} \sum_{i=2}^{n} x_i^2 \\
\leq \left(\left(\frac{n+1}{n} \right)^2 - \frac{n^2-1}{n} \right) x_1^2 - \left(\frac{2}{n+1} \left(\frac{n+1}{n} \right)^2 \right) x_1 + \left(\frac{n+1}{n} \right)^2 \frac{1}{(n+1)^2} + \frac{n^2-1}{n^2} \\
= \frac{2n+2}{n^2} x_1^2 - \frac{2n+2}{n^2} x_1 + 1 =: f(x_1)
\]

Since \(f \) is convex, the maximum of \(f(x_1) \) for \(0 \leq x_1 \leq 1 \) must be attained for \(x_1 \in \{0, 1\} \). But \(f(0) = f(1) \), hence indeed \(B \cap \{x|x_1 \geq 0\} \subseteq E \).

The ratio of the volumes is:

\[
\frac{\text{vol}(E)}{\text{vol}(B)} = \|\det(A')\| = \frac{n}{n+1} \left(\frac{n^2}{n^2-1} \right)^{\frac{n-1}{2}}
\]

\[
\leq e^{-\frac{1}{n+1}} e^{\frac{n-1}{2(n^2-1)}}
\]

\[
= e^{-\frac{1}{n+1}} e^{\frac{n-1}{2(n+1)}} = e^{-\frac{1}{2(n+1)}}
\]

For inequality (3) we use \(1 + x \leq e^x \forall x \in \mathbb{R} \) and for inequality (4) we use \(n^2 - 1 = (n+1)(n-1) \). □

Lemma 4. Let \(0 \leq L \leq 1 \), the ellipsoid method finds a feasible point after at most \(k = 3n^2 \ln \left(\frac{2k}{L} \right) \) iterations.

Proof. After \(k := 2(n+1)n \ln \left(\frac{2R}{L} \right) \) iterations, we have:

\[
\text{vol}(E(A,b)) \leq R^n \text{vol}(B) \left(e^{-\frac{1}{2(n+1)}} \right)^k
\]

\[
\leq (2R)^n \left(e^{-\frac{1}{2(n+1)}} \right)^k
\]

\[
\leq (2R)^n e^{-n \ln \left(\frac{2R}{L} \right)}
\]

\[
= (2R)^n \frac{L^n}{|2R|^n} \leq L
\]

The last inequality comes from \(L \leq 1 \). □
Application to Mean Variance Optimization

Let us now outline, how the Ellipsoid method can be used to solve the Mean Variance Optimization problem. The goal is to find a point in

$$K := \left\{ x \in \mathbb{R}^n \mid \sum_{i=1}^{n} x_i = 1, x_i \geq 0, \forall i = 1, \ldots, n, \sum_{i=1}^{n} x_i \tilde{r}_i \geq r, x^T Q x \leq \delta \right\}$$

- As starting bounds for the binary search, we can choose $L_0 := 0, U_0 := \max_{i,j} Q_{ij}$.
- Including ball: $R = 1$ (because $\sum_{i=1}^{n} x_i = 1$)
- The question is how find a hyperplane to separate $y \in \mathbb{R}^n$ from K, if $y \notin K$

 - If $y_i < 0$ return “$x_i \geq 0$”, i.e., $c := -e_i, \beta := 0$
 - If $\sum_{i=1}^{n} y_i > 1$ return “$\sum_{i=1}^{n} x_i \leq 1$”, i.e., $c := (1, \ldots, 1), \beta := 1$
 - If $\sum_{i=1}^{n} y_i < 1$ return “$\sum_{i=1}^{n} x_i \geq 1$”, i.e., $c := -(1, \ldots, 1), \beta := -1$
 - If $y^T Q y > \delta$ return “$(Qy)^T x \leq \sqrt{\delta y^T Q y}$”
 It is a separating hyperplane because $y^T Q y > \delta \Rightarrow (Qy)^T y = y^T Q y > \sqrt{\delta y^T Q y}$.
 and $x^T Q x \leq \delta \Rightarrow (Qy)^T x = y^T Q x \leq \sqrt{y^T Q y \cdot x^T Q x} \leq \sqrt{y^T Q y \cdot \delta}$ using the Cauchy-Schwarz inequality.

- Unfortunately, K is not full-dimensional in this case, hence we can enlarge K to the following set with non-zero volume by relaxing the constraints:

$$K_\varepsilon := \left\{ x \in \mathbb{R}^n \mid 1 - \varepsilon \leq \sum_{i=1}^{n} x_i \leq 1 + \varepsilon, x_i \geq -\varepsilon, \sum_{i=1}^{n} \tilde{r}_i x_i > r - \varepsilon, x^T Q x \leq \delta + \varepsilon \right\}.$$