Recap

Let \(y_0, \ldots, y^{T-1} \) be price relatives. The return of a portfolio \(x^t \in \Sigma^N \) over time horizon \([0, T]\) is

\[
\prod_{t=0}^{T-1} y^t x^t
\]

A best constant-rebalanced portfolio is a vector \(x \in \Sigma^N \) attaining

\[
\min_{x \in \Sigma^N} \frac{1}{T} \sum_{t=0}^{T-1} -\ln(y^t x)
\]

Our goal is to prove the following theorem:

Theorem 1. One can compute an online strategy \(x_0, \ldots, x_{T-1} \in \Sigma^N \) such that

\[
\frac{1}{T} \sum_{t=0}^{T-1} \left(\ln(y^t x^*) - \ln(y^t x^t) \right) \leq 4\rho \sqrt{\frac{\ln(N)}{T}}
\]

for any \(x^* \in \Sigma^N \), where \(\rho \) is a bound on \(\frac{y^t_i}{y^t_j} \) for all \(i, j, t \).

Remark: The left-hand side of the inequality is referred as average regret. Recall that the first order condition of convexity is as follows:

Lemma 2. Suppose that \(f : \mathbb{R}^n \to \mathbb{R} \) is differentiable and \(\text{dom}(f) \subseteq \mathbb{R}^n \) is convex. Then,

\[
f \text{ is convex } \iff \forall x, y \in \text{dom}(f) : f(y) \geq f(x) + (\nabla f(x))^T (y - x)
\]

Note that the function \(f_t : \Sigma^N \to \mathbb{R} \) with \(f_t(x) = -\ln(x^T y^t) \) is convex. For any \(x \in \Sigma^N \), set \(\rho \) as

\[
\|\nabla f_t(x)\|_\infty \leq \max \frac{y^t_i}{y^t_j} =: \rho \ \forall i, j, t.
\]
Online Portfolio Selection Using RWMA

\textbf{Theorem 3.} (Reinterpretation of [1]) Let $f_t : \Sigma^N \to \mathbb{R}$ be convex and differentiable for $t = 0, \ldots, T - 1$. One can compute $p_0, \ldots, p_{T-1} \in \Sigma^N$ online such that $\forall p^* \in \Sigma^N$,

$$\frac{1}{T} \sum_{t=0}^{T-1} [f_t(p_t) - f_t(p^*)] \leq 4\rho \sqrt{\frac{\ln(N)}{T}}, \text{where } \rho \geq \max_{t, x \in \Sigma^N} \|\nabla f_t(x)\|_\infty.$$

\textit{Proof.} To obtain such a sequence, will will apply again the randomized weighted majority algorithm. We use the following setting: The pure portfolios e_1, \ldots, e_N are the N experts. At time t

- $p_t \in \Sigma^N$ is the distribution on experts $\{1, \ldots, N\}$ (induced by the exponential weights)
- As loss vector, we choose $\ell^t = \nabla f_t(p_t)$, where $\nabla f_t(p_t) \in [-\rho, \rho]^N$.

Recall that

$$E[\hat{L}] \leq \frac{\rho \ln(N)}{\epsilon} + (1 + \epsilon)L_+^j + (1 - \epsilon)L_-^j, \text{ where } L_+^j = \sum_{t=0, \ell^t_j \geq 0} T-1 \ell^t_j, L_-^j = \sum_{t=0, \ell^t_j < 0} T-1 \ell^t_j.$$

In our setting,

$$\frac{E[\hat{L}]}{T} \leq \frac{\rho \ln(N)}{\epsilon T} + (1 + \epsilon)\frac{L_+^j}{T} + (1 - \epsilon)\frac{L_-^j}{T} = \frac{\rho \ln(N)}{\epsilon T} + (1 + \epsilon)\frac{(L_+^j + L_-^j) - 2\epsilon L_-^j}{T} \leq \frac{\rho \ln(N)}{\epsilon T} + (1 + \epsilon)\frac{(L_+^j)}{T} + 2\epsilon \rho \quad (\star)$$

2
Here we used in (⋆) that \(\frac{L_j}{T} \geq -\rho \) and hence \(-2\epsilon \frac{L_j}{T} \leq 2\epsilon \rho \). We obtain

\[
E[\hat{L}] - L_j \leq \frac{\rho \ln(N)}{\epsilon T} + 3\epsilon \rho
\]

We use this bound on the loss of the imaginary forecaster as follows:

\[
\frac{1}{T} \sum_{t=0}^{T-1} (f_t(p_t) - f_t(p^*)) \leq \frac{1}{T} \sum_{t=0}^{T-1} ((\nabla f_t(p_t))^T (p_t - p^*))
\]

\[
= \frac{1}{T} \sum_{t=0}^{T-1} ((\nabla f_t(p_t))^T p_t - (\nabla f_t(p_t))^T p^*)
\]

\[
= \frac{E[\hat{L}]}{T} - \sum_{t=0}^{T-1} (\nabla f_t(p_t))^T p^*
\]

\[
\leq \frac{E[\hat{L}] - L_j}{T}
\]

for some \(j \). In (★★) we used the first order condition \(f(y) \geq f(x) + (\nabla f(x))^T (y - x) \) (and consequently \(f(x) - f(y) \leq (\nabla f(x))^T (x - y) \)). Note that

\[
E[\hat{L}] - L_j \leq \frac{\rho \ln(N)}{\epsilon T} + 3\epsilon \rho \leq 4\rho \epsilon
\]

if we choose \(\epsilon := \sqrt{\frac{\ln(N)}{T}} \). \(\square \)

Remark: A proof of the First-Order Condition can be found e.g. in the book “Convex Optimization“.

Suppose we have to solve:

\[
\min_{x \in \Sigma^N} f(x) \text{ where } f : \mathbb{R}^n \to \mathbb{R} \text{ is convex and differentiable.}
\]

Use the setting from before with \(f_t := f \forall t = 0, \ldots, T - 1 \).

Theorem 4. With the RWMA, one can compute an \(x^* \in \Sigma^N \) such that

\[
f(x^*) - f(x) \leq \delta \text{ for all } x \in \Sigma^N \text{ with } T = \left(\frac{4\rho}{\delta} \right)^2 \ln(N).
\]

Proof. Use \(p_t \) from theorem before with \(f(p_t) \) minimal. \(\square \)

Mean Variance Portfolio Optimization

The following method is based on the diversification principle of Harry Markowitz. Note that Markowitz received the Nobel Prize in economics (1990).
Suppose that \(N \) assets are available. \(R_i \) is return of asset \(i \). \(R = \sum_{i=1}^{N} R_i x_i \) is return of portfolio \(x \in \Sigma^N \). Using \(R = 1 + r \), \((r \) being relative return) and \(\sum_{i=1}^{N} x_i r_i \) is relative return of portfolio.

Basic notions of probability

- If \(x \) is a random variable over a finite probability space, then expected value of \(x \), \(E[x] \) or \(\bar{x} \), is defined as \(E[x] = \sum_i p_ix_i \), where \(p_i \) is the probability of \(x \) attaining the value \(x_i \).
- Linearity of expectation: \(x, y \) are random variables, \(\alpha, \beta \in \mathbb{R} \), then \(E[\alpha x + \beta y] = \alpha E[x] + \beta E[y] \).
- Variance: \(\text{Var}(x) = E[(x - \bar{x})^2] = E[x^2] - E[x]^2 \).
- Standard deviation: \(\sigma(x) = \sqrt{\text{Var}(x)} \).

Example 5. Rolling a dice \((x \in \{1, \ldots, 6\}) \)

- \(E[x] = 3.5 \)
- \(E[x^2] = (1/6)(1+4+9+16+25+36) \)
- \(\text{Var}[x] = 2.29 \)
- Covariance: \(\text{Cov}(x, y) = E[(x - \bar{x})(y - \bar{y})] = E[xy] - \bar{x}\bar{y} \).
- Correlation: \(\text{Corr}(x, y) = \rho(x, y) = \frac{\text{Cov}(x, y)}{\sigma(x)\sigma(y)} \). Observe that \(|\rho(x, y)| \leq 1 \).
 - uncorrelated: \(\rho(x, y) = 0 \)
 - positively correlated: \(\rho(x, y) > 0 \)
 - negatively correlated: \(\rho(x, y) < 0 \)
- Variance of sum: Let \(x_1, \ldots, x_n \) be random variables. Then
 \[
 \text{Var}\left[\sum_{i=1}^{n} x_i\right] = E\left[\sum_{i=1}^{n} (x_i - \bar{x}_i)^2\right]
 = E\left[\sum_{i,j} (x_i - \bar{x}_i)(x_j - \bar{x}_j)\right]
 = E\left[\sum_{i,j} x_i x_j - x_i \bar{x}_j - \bar{x}_i x_j + \bar{x}_i \bar{x}_j\right]
 = \sum_{i,j} E[x_i x_j] - \bar{x}_i \bar{x}_j
 = \sum_{i,j} \text{Cov}(x_i, x_j)
 \]