Computer Algebra
Spring 2011
Assignment Sheet 3

Exercises marked with a ★ can be handed in for bonus points. Due date is April 5.

Exercise 1
Determine the remainder that one gets when dividing $a = 2^{37500120314007842499}$ by 101. We know that $a = q \cdot 101 + r$, where $q \in \mathbb{Z}$ is an enormously large number, and $0 \leq r < 101$. We are only interested in r.

By Fermat’s theorem, $x^{100} \equiv 1 \pmod{101}$ for all $x \in \mathbb{Z}_{101}^\times$. Therefore, $a = 2^{37500120314007842499} \equiv 2^{99} \equiv 2^{-1} \pmod{101}$. That is, we need to find the inverse of 2. Using the extended Euclidean algorithm or intuition, we find that $2 \cdot 51 \equiv 1 \pmod{101}$.

Now we know $a - 51 \equiv 0 \pmod{101}$, which implies $a - 51 = q \cdot 101$ for some $q \in \mathbb{Z}$. Since $0 \leq 51 < 101$ and division with remainder has a unique result, we know that $r = 51$.

Exercise 2
Let $N = pq$, where $p \neq q$ are primes. Show that given only N and $\varphi(N)$, one can compute the prime factors p and q efficiently.

We know that $\varphi(N) = (p - 1)(q - 1)$, allowing us to compute:

$$\varphi(N) = pq - (p + q) + 1 = N - p - N \frac{1}{p} + 1$$

Since we are given N and $\varphi(N)$, this is a quadratic equation in p:

$$p^2 + (\varphi(N) - N - 1) \cdot p + N = 0$$

Since we can find the roots of a polynomial efficiently, this allows us to find p and q.

A different way to arrive at the same result is to explicitly define the polynomial which has roots p and q:

$$f(x) = (x - p)(x - q) = x^2 - (p + q) \cdot x + pq = x^2 + (\varphi(N) - N - 1) \cdot x + N$$

Exercise 3
Let us first compute $x^{N-1} \pmod{p}$. Since p is prime, $x^{p-1} \equiv 1 \pmod{p}$ for all x.

$$x^{N-1} \equiv x^{p(2p-1)-1} \equiv x^{p(2p-2)+(p-1)} \equiv 1 \pmod{p}$$
In other words, \(x^{N-1} \equiv 1 \pmod{p} \) for all \(x \in \mathbb{Z}_N^* \). So it follows that \(x \) is a Fermat liar if and only if \(x^{N-1} \equiv 1 \pmod{2p-1} \). If \(x \equiv a^2 \pmod{2p-1} \), then
\[
x^{N-1} \equiv a^{2(N-2)} \equiv a^{2p(2p-1)-2} \equiv a^{2p(2p-2)+2p-2} \equiv 1 \pmod{2p-1},
\]
so \(x \) is a Fermat liar.

Conversely, if \(x \) is a Fermat liar, then
\[
1 \equiv x^{N-1} \equiv x^{p(2p-1)-1} \equiv x^{p(2p-2)+p-1} \equiv x^{p-1} \pmod{2p-1},
\]
so the order of \(x \in \mathbb{Z}_{2p-1}^* \) is a factor of \(p-1 \). Since \(\mathbb{Z}_{2p-1}^* \) is cyclic, this implies that \(x \) is a square, i.e. \(x \equiv a^2 \pmod{2p-1} \) for some \(a \in \mathbb{Z}_{2p-1}^* \).

Furthermore, since \(\mathbb{Z}_{2p-1}^* \) is cyclic, exactly half its elements are squares. Since \(\mathbb{Z}_N^* \equiv \mathbb{Z}_p^* \times \mathbb{Z}_{2p-1}^* \), and an element \((x, y) \in \mathbb{Z}_p^* \times \mathbb{Z}_{2p-1}^* \) corresponds to a Fermat liar if and only if \(y \) is a square, it follows that exactly half of such pairs are Fermat liars.

Exercise 4

Let \(N = p^k \) where \(p \) is prime and \(k \geq 2 \). Show that \(N \) is not a Carmichael number.

We know that \(|\mathbb{Z}_N^*| = \phi(N) = (p-1) \cdot p^{k-1} \). In other words, the group order is a multiple of \(p \), since \(k \geq 2 \). It follows that there exists a group element \(x \in \mathbb{Z}_N^* \) of order \(p \). Let us compute:
\[
x^{N-1} \equiv x^{p^{k-1}} \equiv x^{-1} \pmod{N},
\]
because \(x^p \equiv 1 \pmod{N} \) by the order of the element. Since \(x \not\equiv 1 \), we also have \(x^{-1} \not\equiv 1 \), and therefore \(x \) is not a Fermat liar. Consequently, \(N \) is not Carmichael.

Exercise 5

Suppose you are given \(N = pq \), where \(p \neq q \) are primes, and \(x \in \mathbb{Z}_N^* \) such that \(x \equiv 1 \pmod{p} \) and \(x \not\equiv 1 \pmod{q} \). Show how to compute \(p \) and \(q \) efficiently.

We have \(x-1 \equiv 0 \pmod{p} \) and \(x-1 \not\equiv 0 \pmod{q} \). This means that \(x-1 \) is a multiple of \(p \), but not of \(q \). Therefore, \(\gcd(x-1, N) = p \).

Exercise 6

Let \(N = pq \), where \(p \neq q \) are primes, and let \(e \neq d \) be natural numbers such that \(ed \equiv 1 \pmod{\phi(N)} \). Show that given only \(N \), \(e \), and \(d \), one can efficiently compute the prime factorization of \(N \).

We can easily check whether \(N \) is even, so for the remainder, we will assume that \(p > 2 \) and \(q > 2 \). We know that
\[
ed = k \cdot \phi(N) + 1
\]
for some \(k \in \mathbb{Z} \). So for any \(x \in \mathbb{Z}_N^* \), one has (in the ring \(\mathbb{Z}_N \)):
\[
x^{ed-1} = x^{k \cdot \phi(N)} = (x^{\phi(N)})^k = 1^k = 1
\]
Write \(ed - 1 \) as the product of an odd number and a power of two:
\[
ed - 1 = M \cdot 2^m
\]
Since we are given e and d, both m and M can be computed efficiently. Consider the following fragment of an algorithm:

1. $x \leftarrow_R \{1, \ldots, N-1\}$
2. If $\gcd(x, N) \neq 1$, return that factor.
3. $y_0 \leftarrow x^M$
4. for $j \leftarrow 1 \ldots m$
 5. $y_j \leftarrow y_{j-1}^2$
 6. if $y_j = 1$
 7. then return $\gcd(y_{j-1} - 1, N)$

If the random choice of x happens to be a non-invertible element of \mathbb{Z}_N, then the initial computation of the greatest common divisor yields a factor of N (why?). Of course, the probability that this happens is rather small.¹

Otherwise, conditioning on this not happening, x is uniformly distributed in \mathbb{Z}_N^\ast. Note that $y_j = x^{M\cdot 2^j}$ (by induction!), and so one always has $y_m = 1$, independently of the random choice of x in the beginning, so the algorithm will always eventually return from the last line.

The goal is now to show that when it does, it will return p or q with a high probability. The previous exercise is essentially a hint on how to show this. If $y_{a-1}(x) \equiv 1 \pmod{p}$ and $y_{a-1}(x) \equiv 1 \pmod{q}$, then the algorithm will return p. What is the probability that this happens? We will follow a strategy similar to the proof of the Miller-Rabin primality test.

Let a be the smallest number such that $y_a(x) \equiv 1 \pmod{p}$ for all possible choices of $x \in \mathbb{Z}_N^\ast$. To make the notation less confusing, we will write $y_j(x) = x^{M\cdot 2^j}$, i.e. $y_j(x)$ is the value that y_j takes given a fixed initial choice of x. So the formal definition of a is

$$a := \min\{j \mid y_j(x) \equiv 1 \pmod{p} \text{ for all } x \in \mathbb{Z}_N^\ast\}$$

Similarly, we define

$$b := \min\{j \mid y_j(x) \equiv 1 \pmod{q} \text{ for all } x \in \mathbb{Z}_N^\ast\}$$

We know that $a, b \leq m$ by the observation above. We also know that $a, b \geq 1$, because $y_0(-1) \equiv (-1)^M = -1 \pmod{p, q}$.² Assume without loss of generality that $a \leq b$ (otherwise exchange the role of p and q). Let us define two useful subgroups of \mathbb{Z}_N^\ast:

$$G := \{x \in \mathbb{Z}_N^\ast \mid y_{a-1}(x) \equiv 1 \pmod{p}\}$$

$$H := \{x \in \mathbb{Z}_N^\ast \mid y_{a-1}(x) \equiv 1 \pmod{p} \text{ and } y_{a-1}(x) \equiv 1 \pmod{q}\}$$

Note that H can be equivalently defined as those x for which $y_{a-1}(x) = 1$ in \mathbb{Z}_N^\ast. Convince yourself that these really are subgroups and that $H \leq G \leq \mathbb{Z}_N^\ast$.

Claim: $|G| = \frac{|\mathbb{Z}_N^\ast|}{2^a}$, and H is a strict subgroup of G.

¹You can compute exactly how small it is, try it!

²Here we use that M is odd, $p \neq 2$ and $q \neq 2$.
Let us first convince ourselves that given the claim, the result follows. The idea is that when the random choice of the algorithm happens to yield an \(x \in G \setminus H \), then it will return \(p \). Here's why: In this case, we have

\[
y_{a-1}(x) \equiv 1 \quad (\text{mod } p)
\]
\[
y_{a-1}(x) \not\equiv 1 \quad (\text{mod } q)
\]

Suppose \(c \) is the smallest number such that \(y_c(x) = 1 \). Then clearly

\[
y_{c-1}(x) \equiv 1 \quad (\text{mod } p)
\]
\[
y_{c-1}(x) \not\equiv 1 \quad (\text{mod } q)
\]

In fact, we even know that \(y_{c-1}(x) \equiv -1 \quad (\text{mod } q) \), because \(q \) is a prime and \(y_{c-1}(x) \) is a square root of 1 in \(\mathbb{Z}_q \), but this particular detail is not needed. The point is that the algorithm will return the greatest common divisor when \(j = c \), and it will return \(\gcd(y_{c-1}(x) - 1, N) \). By the previous exercise, this is equal to \(p \).

So what is the probability that this happens? Again, assume that the claim above is true. If \(H \) is a strict subgroup of \(G \), then \(|H| \leq \frac{|G|}{2} \), since the size of a subgroup is a factor of the size of the group it is contained in. So then (implicitly conditioning on \(x \in \mathbb{Z}_N^* \)):

\[
\Pr[x \in G \setminus H] = \frac{|G \setminus H|}{|\mathbb{Z}_N^*|} = \frac{|G| - |H|}{|\mathbb{Z}_N^*|} \geq \frac{1}{2} \cdot \frac{|G|}{|\mathbb{Z}_N^*|} = \frac{1}{4}
\]

We can conclude that the algorithm returns \(p \) with probability at least \(\frac{1}{4} \). Repeating the algorithm often enough with independent random choices of \(x \), we expect to obtain \(p \) after at most 4 runs. If we run the algorithm \(n \) times, the probability of \emph{never} obtaining \(p \) drops exponentially with \(n \). It only remains to prove the claim above.

Proof of the Claim: By the Chinese Remainder Theorem, \(\mathbb{Z}_N^* \cong \mathbb{Z}_p^* \times \mathbb{Z}_q^* \). It is easy to see that this isomorphisms restricts to \(G \cong G' \times \mathbb{Z}_q^* \), where

\[
G' = \{ x \in \mathbb{Z}_p^* \mid x^{M \cdot 2^{a-1}} \equiv 1 \text{(mod } p) \}
\]

Consider the group homomorphism \(f : \mathbb{Z}_p^* \to \mathbb{Z}_q^* \) defined by \(f(x) = x^{M \cdot 2^{a-1}} \). We know that \(f(x)^2 \equiv 1 \) for all \(x \in \mathbb{Z}_p^* \) because of how \(a \) was defined. Another way to put this is to say that \(f(x) \) is a square root of 1. Since \(p \) is prime, \(\mathbb{Z}_p^* \) is the multiplicative group of a field, where \(1 \) and \(-1 \) are the only square roots of 1. Therefore, the image of \(f \) is the set \(\{ \pm 1 \} \). It is easy to see that \(G' \) is the kernel of \(f \). Since \(f \) is a group homomorphism between finite groups, we have

\[
|\text{domain}(f)| = |\ker f| \cdot |\text{im} f|
\]

This implies \(|\mathbb{Z}_p^*| = |G'| \cdot 2 \), and via the isomorphism above \(|\mathbb{Z}_N^*| = |G| \cdot 2 \), which establishes the first part of the claim.

\(^3\) \(c \) depends on \(x \). We have \(a \leq c \leq b \).

\(^4\) Of course, there is also a chance that the algorithm returns \(q \). For the purpose of factoring \(N \), it doesn't matter which factor is returned, and so this can only increase the algorithm's chance of success. Note that I have made no attempt to estimate the probability that \(q \) is returned, and in fact, the probabilities are \emph{not} equal, and the proof is \emph{not} symmetric, because it does use \(a \leq b \).
For the second part of the claim, we simply have to show that $G \setminus H$ is non-empty, and to do that, it is sufficient to construct an element $x \in G \setminus H$. By the definition of b, there is an element $y \in \mathbb{Z}_q^*$ such that

$$y^{M \cdot 2^{b-1}} \not\equiv 1 \pmod{q}$$

Since $b \geq a$, this implies that

$$y^{M \cdot 2^{a-1}} \not\equiv 1 \pmod{q}$$

By the Chinese Remainder Theorem, let $x \in \mathbb{Z}_N^*$ such that

\[
\begin{align*}
 x &\equiv 1 \pmod{p} \\
 x &\equiv y \pmod{q}
\end{align*}
\]

We can compute that

\[
\begin{align*}
 x^{M \cdot 2^{a-1}} &\equiv 1 \pmod{p} \\
 x^{M \cdot 2^{a-1}} &\equiv y^{M \cdot 2^{a-1}} \not\equiv 1 \pmod{q},
\end{align*}
\]

from which we see that $x \in G \setminus H$, and so $G \setminus H$ is not empty. This means that H is a proper subgroup of G, which establishes the second part of the claim and completes the proof.