Exercises marked with a ⋆ can be handed in for bonus points. Due date is November 05.

Exercise 1

1. Left to the reader.

2. We will go through the proof that the algorithm provides a 2-approximation, and suitably modify it. Consider an optimal solution T^* to the Steiner tree problem, and double its edges. We obtain an Eulerian graph (i.e. a graph where all nodes have even degree) \tilde{G} of cost $2c(T^*)$. We can now order the terminals as follows: starting from a terminal t_1, compute an eulerian walk of \tilde{G} (i.e. a closed walk that passes through all edges of \tilde{G} exactly once). Order the terminals $t_1, \ldots, t_{|X|}$ according to the order they are encountered for the first time. The shortest path in G between two successive terminals is at most the corresponding cost over the walk. This implies $2c(T^*) \geq 2\sum_{i=1}^{|X|} d(t_i, t_{i+1})$, where we set $t_{|X|+1} = t_1$. Hence, this implies that in the metric closure, the cycle $\{t_1, t_2, \ldots, t_k, t_1\}$ has cost at most $2c(T^*)$. Hence, its most expensive edge has cost at least $2c(T^*)/|X|$. By removing it we obtain a path in the metric closure of cost at most $2c(T^*)(1 - 1/|X|)$. This a spanning tree in the closure, hence it cannot have cost bigger than the output solution.

3. Consider the graph with n terminals and one non-terminal node v. Edge costs are $1 + \epsilon$ between v and any terminal, and 2 between any two terminals. The optimum spanning tree in the closure has cost $2(n-1)$, while the optimum solution has cost $n(1+\epsilon)$. By choosing ϵ small enough, the ratio can be made arbitrarily close to $1 - 1/n = 1 - 1/|X|$, as required.

Exercise 2

1. Left to the reader

2. Let D be the set of nodes sampled in the first part of the algorithm, and T^* the Steiner tree with terminals D constructed by the algorithm (those are the edges our algorithms “buys”). Let S the be the set of edges picked in the second part (with repetitions when edges are picked multiple times): those are the edges our algorithm “rents”. The total
cost of the solution output by the algorithm is \(M c(T^*) + c(S) \). Recall that in the proof of the 4-approximation we first showed

\[
E(M c(T')) \leq c(OPT),
\]

where \(T' \) is the optimum Steiner tree over \(D \). This implies \(E(M c(T^*)) \leq \alpha c(OPT) \) (with the 2 approximation for Steiner Tree we deduced \(E(M c(T^*)) \leq 2c(OPT) \)). Then we showed

\[
E(c(S)) \leq E(T) \leq 2c(OPT),
\]

where \(T \) is the tree obtained applying Prim's algorithm to the metric closure of the graph. The last inequality follows (1) and from the fact that \(T \) is a 2-approximation of \(T' \) (hence, this upper bound is not related to the Steiner tree we constructed in the first part). Hence we can improve the first part of the analysis, not the second, and obtain a \((\alpha + 2)\)-approximation algorithm in expected value.

Exercise 3

1. Let \(S \) be the optimum solution, and suppose by contradiction it is not a tree. As seen in class, we can suppose that there exists two terminals \(t_1 \) and \(t_2 \) whose paths \(P_1 \) and \(P_2 \) to \(r \) meet at some vertex \(v \), diverges, and then meets again at some vertex \(u \). Call \(e_1, \ldots, e_k \) the edges of the path between \(v \) and \(u \) in \(P_1 \), and \(e'_1, \ldots, e'_j \) those of \(P_2 \). Set \(\Delta(x_{e_1}, \ldots, x_{e_k}) = (f_{e_1}(x_{e_1} + 1) - f_1(x_{e_1})) + \cdots + (f_{e_k}(x_{e_k} + 1) - f_{e_k}(x_{e_k})) \) and \(\Delta'(x_{e'_1}, \ldots, x_{e'_j}) = (f'_{e'_1}(x'_{e'_1} + 1) - f'_{e'_1}(x'_{e'_1})) + \cdots + (f'_{e'_j}(x'_{e'_j} + 1) - f'_{e'_j}(x'_{e'_j})) \). Assume wlog \(\Delta(x_{e_1}, \ldots, x_{e_k}) \leq \Delta'(x_{e'_1}, \ldots, x_{e'_j}) \).

Since the cost function is concave and non-decreasing, we know that \(\Delta(x_{e_1}, \ldots, x_{e_k}) \leq \Delta(x_{e_1} - 1, \ldots, x_{e_k} - 1) \) and similarly for \(\Delta' \). Hence the solution \(S' \) obtained by moving the path of \(t_2 \) between \(v \) and \(u \) to \(e_1, \ldots, e_k \) has cost

\[
c(S') = c(S) + \Delta(x_{e_1}, \ldots, x_{e_k}) - \Delta(x'_{e'_1}, \ldots, x'_{e'_j}) - 1)
\leq c(S) + \Delta(x_{e_1}, \ldots, x_{e_k}) - \Delta'(x'_{e'_1}, \ldots, x'_{e'_j})
\leq c(S).
\]

Since the optimum solution was assumed to be unique, we obtain \(c(S') < c(S) \), a contradiction.

2. This is a simple generalization of what we saw in Exercise 4 of the first assignment (in this case, we have to consider that each edges may assume values from 1 to \(n - 1 \)). We leave it to the reader. We can then deduce that any instance of ssrob can be perturbed so that it has a unique optimum solution, which is also the optimum of the original problem. By point [1.], it is a tree. Hence the original instance has an optimal solution that is a tree.

3.i Proceed as in 1, and deduce \(\Delta(x_{e_1}, \ldots, x_{e_k}) < \Delta(x_{e_1} - 1, \ldots, x_{e_k} - 1) \) from strict concavity. Then \(c(S') < c(S) \), hence \(S \) is not an optimal solution.
3.ii Let \(f_e(x) \) be the cost function relative to edge \(e \), and define \(\tilde{f}_e(x) = f_e(x) + \alpha \log(1 + x) \), with \(\alpha > 0 \) a constant to be fixed. It is the sum of a concave and a strictly concave function, hence it is strictly concave. Now we show how to set \(\alpha \) so that the optimum solutions of the new problem are also optimum solutions of the original problem. Set \(\epsilon = \min_{e \in E, \, x \in \{1, \ldots, n\}} (f_e(x) - f_e(x - 1)) \), and \(\alpha = m/\epsilon \). Then pick two solutions \(S, S' \) to the original problem of different cost, say \(f(S) < f(S') \). Then \(f(S) + \epsilon \leq f(S') \). Set \(\alpha < \epsilon |E| \log |V| \). We obtain
\[
\tilde{f}(S) = \sum_{e} \tilde{f}_e(x_e) = \sum_{e} f_e(x_e) + \alpha \sum_{e} \ln(1 + x_e) \leq f(S) + \alpha |E| \ln |V| < f(S) + \epsilon \leq f(S') \leq \tilde{f}(S'),
\]
as required. Now we proceed as in 2 and deduce that every instance of gssrob has an optimal solution that is a tree.

Exercise 4
FYI: this problem is known as Set cover.

1. Note that \(\sum_e \text{price}_e = C(\mathcal{S}) \). Let \(e_i \) be the element that is inserted into \(C \) as the \(i \)-th (break ties arbitrarily). Note that, when it is selected, there are at least \(n - i + 1 \) elements that need to be covered. Call them \(T \). Hence \(|T| \geq n - i + 1 \).

We now show that \(\text{price}_{e_i} \leq \frac{c(OPT)}{n-i+1} \). Suppose not. Then all the remaining elements will be covered with sets of price at least \(\text{price}_{e_i} \) (the algorithm first covers elements with smaller price) and we have:
\[
\sum_{e \in T} \text{price}_e > (n - i + 1) \cdot \frac{c(OPT)}{n-i+1} = c(OPT).
\]
This is a contradiction, since in the optimum solution, elements from \(T \) are covered by set of cost at most \(c(OPT) \), and those must all be available when \(e_i \) is covered (otherwise, some element from \(T \) was already covered). Hence
\[
\sum_{e} \text{price}_e \leq \frac{n}{n-i+1} c(OPT) = (1 + \frac{1}{2} + \cdots + \frac{1}{n}) c(OPT),
\]
concluding the proof.

2. Let \(S = \{e_1, \ldots, e_n\} \), and \(\mathcal{S} \) be formed by the sets \(S_i = \{e_1, \ldots, e_i\} \) with cost \(\frac{1}{n-i+1} \) for \(i = 1, \ldots, n \), plus the set \(S' \) with cost \(1+\epsilon \). The optimum is \(S' \), while one can easily check that the algorithm will choose all sets \(S_i \) for a total cost \((1 + 1/2 + \cdots + 1/n) c(OPT) \).