Exercises

Optimization Methods in Finance

Fall 2009

Sheet 3

Note: This is just one way, a solution could look like. We do not guarantee correctness. It is your task to find and report mistakes.

Exercise 3.1
Suppose we are given assets \(i = 0, \ldots, n \) which are currently (at time 0) priced at \(S_i^0 \). There are scenarios \(\omega_j \) for \(j = 1, \ldots, m \), in scenario \(\omega_j \) asset \(i \) will have a price of \(S_i^1(\omega_j) \) at time 1. Give an LP, for which any optimum solution gives a portfolio \(x \) that provides type-B arbitrage (if such an arbitrage exists).

Hint: Recall that an optimum solution to

\[
\min \sum_{i=0}^n S_i^0 \cdot x_i \\
\sum_{i=0}^n S_i^1(\omega_j) \cdot x_i \geq 0 \quad \forall j = 1, \ldots, m \\
x_i \in \mathbb{R} \quad \forall i = 1, \ldots, n
\]

is used to detect type-A arbitrage.

Solution:
By definition, a portfolio \(x \) provides type-B arbitrage iff we have a non-negative ingoing cash-flow at time 0 and a non-negative ingoing cash flow at time 1 for any scenario, but for at least one scenario we have a strictly positive ingoing cashflow at time 1. Consider the following LP

\[
\max \sum_{j=1}^m y_j \\
\sum_{i=0}^n S_i^0 \cdot x_i \leq 0 \\
\sum_{i=0}^n S_i^1(\omega_j) \cdot x_i \geq y_j \quad \forall j = 1, \ldots, m \\
y_j \geq 0 \quad \forall j = 1, \ldots, m \\
x_i \in \mathbb{R} \quad \forall i = 1, \ldots, n
\]

Clearly in an optimum solution one has \(\sum_{i=0}^n S_i^0(\omega_j) = y_j \) (otherwise the \(y_j \)'s could be increased). In other words, \(y_j \) gives the profit in scenario \(\omega_j \). If \(\sum_{j=1}^m y_j > 0 \) then there must be at least one \(j^* \) with \(y_{j^*} > 0 \) (and \(y_j \geq 0 \) for all other \(j \)). Vice versa a portfolio with type-B arbitrage yields a feasible solution with positive objective function value.
Exercise 3.2
Consider the Mean Variance Optimization problem
\[
\begin{align*}
\max & \mu^T x \\
x^T Q x & \leq \sigma^2 \\
\sum_{i=1}^{n} x_i & = 1 \\
x & \geq 0
\end{align*}
\]
where \(\mu_i \) gives the expected return of asset \(i \) and \(Q \) is the covariance matrix. \(\sigma^2 \) is a given parameter, upper-bounding the variance. \(x_i \) gives the ratio, which we are going to invest into asset \(i \).
Suppose we already have a portfolio \(y \) (i.e. \(y \in \mathbb{R}^n \) and \(\sum_{i=1}^{n} y_i = 1 \)). Increasing the ratio \(y_i \), invested into asset \(i \) by some arbitrary \(\delta \in [0, 1] \), costs \(\delta \cdot c_i^+ \geq 0 \), whereby decreasing this ratio by \(\delta \) costs \(\delta \cdot c_i^- \geq 0 \).
Extend the above Mean Variance Optimization problem, such that the expected return minus the arising transaction costs is maximized (this has to be modeled with linear inequalities/equations). Explain the meaning of newly introduced decision variables.

Solution:
Introduce \(\delta_i^+ \) as a variable, defining the increase of portfolio \(i \) and \(\delta_i^- \) the decrease of portfolio \(i \).
\[
\begin{align*}
\max & \mu^T x - \sum_{i=1}^{n} c_i^+ \delta_i^+ - \sum_{i=1}^{n} c_i^- \delta_i^- \\
x^T Q x & \leq \sigma^2 \\
\sum_{i=1}^{n} x_i & = 1 \\
\delta_i^+ & \geq x_i - y_i \ \forall i = 1, \ldots, n \\
\delta_i^- & \geq y_i - x_i \ \forall i = 1, \ldots, n \\
x & \geq 0 \\
\delta_i^+, \delta_i^- & \geq 0 \ \forall i = 1, \ldots, n
\end{align*}
\]
Since \(c_i^+, c_i^- \geq 0 \) in an optimum solution we would have \(\delta_i^+ = \max\{x_i - y_i, 0\} \) and \(\delta_i^- = \max\{y_i - x_i, 0\} \), thus the program is correct.

Exercise 3.3
Let \(f : \mathbb{R}^n \to \mathbb{R} \) be a convex function and \(x, y \in \mathbb{R}^n \). Prove that \(g : [0, 1] \to \mathbb{R} \) with \(g(t) = f(t x + (1-t) y) \) is convex as well.
Solution:
Let \(t_1, t_2, \lambda \in [0, 1] \). Then
\[
g(\lambda t_1 + (1 - \lambda) t_2) = f((\lambda t_1 + (1 - \lambda) t_2) \cdot x + (1 - (\lambda t_1 + (1 - \lambda) t_2)) \cdot y)
\]
\[
= f((\lambda t_1 + (1 - \lambda) t_2) \cdot x + (1 - \lambda t_1 + (1 - \lambda)(1 - t_2)) \cdot y)
\]
\[
= f(\lambda (t_1 x + (1 - t_1)) y + (1 - \lambda) \cdot (t_2 x + (1 - t_2)) y)
\]
\[
f \text{ convex} \leq \lambda \cdot f(t_1 x + (1 - t_1) y) + (1 - \lambda) \cdot f(t_2 x + (1 - t_2) y)
\]
\[
= \lambda \cdot g(t_1) + (1 - \lambda) \cdot g(t_2)
\]

Exercise 3.4
Let \(Q \in \mathbb{R}^{n \times n} \) be a symmetric matrix. Show that \(Q \) is positive semidefinite (i.e. \(\forall x \in \mathbb{R}^n : x^T Q x \geq 0 \)) if and only if all eigenvalues of \(Q \) are non-negative.

Hint: You may use the following theorem from linear algebra: Given a symmetric matrix \(A \in \mathbb{R}^{n \times n} \), there are eigenvalues \(\lambda_1, \ldots, \lambda_n \in \mathbb{R} \) with eigenvectors \(v_1, \ldots, v_n \in \mathbb{R}^n \) (i.e. \(Av_i = \lambda_i v_i \) for \(i = 1, \ldots, n \)), which form an orthonormal basis of the \(\mathbb{R}^n \) (that means \(v_i^T v_j = 0 \) for all \(i \neq j \) and \(v_i^T v_i = 1 \) for all \(i = 1, \ldots, n \)).

Solution:
Let \(\lambda_1, \ldots, \lambda_n \in \mathbb{R} \) be the eigenvalues with orthonormal eigenvectors \(v_1, \ldots, v_n \) according to the above theorem.

\[\Rightarrow \] Suppose there is an \(i \in \{1, \ldots, n\} \) with \(\lambda_i < 0 \), then \(v_i^T Q v_i = v_i^T (\lambda_i v_i) = \lambda_i v_i^T v_i < 0 \) thus \(Q \) is not positive-semidefinite.

\[\Leftarrow \] Suppose \(\lambda_1, \ldots, \lambda_n \geq 0 \). Let \(x \in \mathbb{R}^n \). Since \(v_1, \ldots, v_n \) are a basis, we can write
\[
x = \mu_1 v_1 + \ldots + \mu_n v_n
\]
But then
\[
x^T Q x = (\mu_1 v_1 + \ldots + \mu_n v_n)^T Q (\mu_1 v_1 + \ldots + \mu_n v_n)
\]
\[
= \sum_{i=1}^n \sum_{j=1}^n \mu_i \mu_j v_i^T (Q v_j) = \lambda_i v_i^T v_i \geq 0
\]
\[
\geq 0 \quad \text{if } i \neq j \text{ and } 1 \text{ otherwise}
\]
using that \(v_i \perp v_j \) for \(i \neq j \).