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Exercise 1
Let C be a unimodular cone. Prove that the dual cone C* is also unimodular.

Exercise 2
Let a; and a, be two relatively prime positive integers and let S be the set of all non-negative
integral combinations of a; and ay:

S= {Aldl +Arar: A, A0 € Z+}.

Show that

1-xa®

L = e

meS

Exercise 3
Let a1, a; and a3 be pairwise relatively prime positive integers and let S be the set of all non-
negative integral combinations of a;, a, and as:

S= {/1101 +/l2a2 +7L3a3 . /11,/12,/13 € Z+}.

Show that

by _ by bs
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Exercise 4
Let ay,ay,...,a, and ry,719,..., 7, be positive integers and suppose that the sets r; + a;Z form a
partition of Z, i.e.,

Z=n+m2)U(rp+axZ)U...U(r,+ay”Z)

and (r; +a;Z)n(rj+a;Z) = ¢ for i # j. Prove that there are i # j such that a; = a;.
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