Exercise 1 (Rational generating functions for cones)

Let C be a cone in \mathbb{R}^n generated by linearly independent vectors $C = \text{cone}(u_1, u_2, \ldots, u_k)$ for some integral vectors $u_1, u_2, \ldots, u_k \in \mathbb{R}^n$. Show that

$$f(C; x) = \left(\prod_{m \in \Pi \cap \mathbb{Z}^n} x^m \right)^k \frac{1}{\prod_{i=1}^{k} (1 - x^{u_i})},$$

where Π is the fundamental parallelepiped generated by u_1, u_2, \ldots, u_k:

$$\Pi = \left\{ \sum_{i=1}^{k} \lambda_i u_i : 0 \leq \lambda_i < 1, \ i = 1, 2, \ldots, k \right\}.$$

Is it also true when u_1, u_2, \ldots, u_k are not linearly independent?

Exercise 2 (Rational generating functions for not pointed polyhedra)

Let P be a rational polyhedron containing a straight line. Show that $f(P; x) \equiv 0$.

Exercise 3 (Brion's theorem)

Let P be a rational polyhedron. Prove that

$$f(P; x) = \sum_{v \in \text{Vert}(P)} f(\text{cone}(P, v); x).$$

Exercise 4 (The reciprocity relation)

Let C be a pointed rational cone in \mathbb{R}^n with non-empty interior $\text{int}(C)$. Prove that

$$f(\text{int}(C); x^{-1}) = (-1)^n f(C; x).$$