Integer Points in Polyhedra

Spring 2009

Assignment Sheet 3

Exercise 1 (Well-ordered basis)
Let \(b_1, b_2 \in \mathbb{Z}^2 \) be a basis of two-dimensional lattice. Show that we can transform this basis, in constant time, into a well-ordered basis, i.e., basis \(b_1', b_2' \) satisfying

\[
\| b_1' \| \leq \| b_2' - b_1' \| \leq \| b_2' \| \leq \| b_2' + b_1' \|.
\]

Exercise 2 (Running time of the generalized Gauss algorithm)
Prove that the generalized Gauss reduction algorithm in \(\mathbb{R}^2 \) runs in polynomial time.

Exercise 3 (Closest vector in \(\mathbb{R}^2 \))
Describe an efficient algorithm that, provided a lattice \(\Lambda \subseteq \mathbb{R}^2 \) and a vector \(v \in \mathbb{R}^2 \), finds a lattice vector \(z \in \Lambda \) with \(\| z - v \| \) as small as possible.

Exercise 4 (Integral points in fundamental parallelepiped)
Let \(b_1, b_2, \ldots, b_n \) be linearly independent integral vectors in \(\mathbb{R}^n \). Show that the fundamental parallelepiped

\[
P(b_1, b_2, \ldots, b_n) = \left\{ \sum_{i=1}^{n} \lambda_i b_i : 0 \leq \lambda_i < 1, \ i = 1,2,\ldots,n \right\}
\]

contains exactly \(\det(b_1, b_2, \ldots, b_n) \) integral vectors.

Exercise 5 (Integral points in ellipsoids)
Given an algorithm computing the shortest lattice vector wrt \(\| \cdot \|_2 \), describe an algorithm to find an integral point in a given ellipsoid \(\| Ax \|_2 \leq b \).