Problem 1
Let C be the square with corners at $(1,1), (1,-1), (-1,1), (-1,-1)$. Draw the polar of C. Now consider the square C' with corners at $(1,1), (1,0), (0,1), (0,0)$ and draw its polar. Why is it different from the previous one?

Problem 2
Let $P \subseteq \mathbb{R}^n$ be a full dimensional polytope that contains the origin 0 in its interior. Let $x \in \mathbb{R}^n$. Prove that x is a vertex of P if and only if $\{y \in \mathbb{R}^n | x^\top y \leq 1\}$ defines a facet of P^0. (Hint: use the fact that any point in P can be expressed as a convex combination of the vertices in P).

Problem 3
Let $M(E, I)$ be a matroid with rank function r, $x^* \in \mathbb{R}^n_+$, $f : 2^E \to \mathbb{R}$ defined as $f(A) = r(A) - x^*(A)$. Prove that f is submodular. Deduce that one can solve the separation problem for the matroid polytope by solving the problem of minimizing a submodular function.

Problem 4
We are given a graph $G(V, E)$ and a coloring of its edges. We want to find whether there exists a spanning tree T of G such that no two edges of T have the same color. Show how to solve this problem in polynomial time.