Problem 1
Given the weighted graph on the right, find the following:

a) A matching that is not perfect and has weight 15.

b) A \(w \)-vertex cover of weight 16 where at least seven vertices have non zero weights.

Problem 2 (*)
Let \(G \) be a graph and let \(A \) be its node-edge incidence matrix. We have seen in class that if \(G \) is bipartite then \(A \) is totally unimodular. Prove the converse, i.e., if \(A \) is totally unimodular then \(G \) is bipartite.

Problem 3
Consider a bipartite graph \(G = (U \cup W, E) \). Assume there exist matchings \(M_U \) and \(M_W \) covering vertices \(U_1 \subseteq U \) and \(W_1 \subseteq W \), respectively. Prove that there always exists a matching that covers \(U_1 \cup W_1 \).

Hint: The symmetric difference \(M_U \Delta M_W \) consists of only cycles and paths.

Problem 4
Given a graph \(G = (V, E) \), a subset \(S \subseteq V \) is called stable (or independent) if \(|e \cap S| \leq 1 \) for each \(e \in E \). The independent set problem (ISP) is to find a maximum cardinality stable set on \(G \).

We know that an optimal (but not-necessarily integral) solution of a linear program (LP) can be found in polynomial time. Show that the ISP can be solved in polynomial time if \(G \) is bipartite.

a) Let \(\bar{A} \), \(\bar{b} \), \(\bar{c} \) and \(x^* \) be given as the input, where \(x^* \) is an optimal solution of \(\max \{ c^T x : x \in P \} \) and \(P = \{ x \in \mathbb{R}^n : \bar{A}x \leq \bar{b} \} \). If \(x^* \) is not a vertex of \(P \), argue that one can find a vertex \(\bar{x} \) of \(P \) in polynomial time such that \(\bar{c}^T \bar{x} = \bar{c}^T x^* \).

b) Formulate an LP relaxation of the ISP in the form

\[
\max \quad c^T x \\
\text{s.t.} \quad Ax \leq b \\
\quad x \geq 0
\]

such that \(A \in \mathbb{Z}^{m \times n} \) is totally unimodular for bipartite \(G \), \(b \in \mathbb{Z}^m \) and the corresponding polytope is a convex hull of indicator vectors of stable sets on \(G \). Additionally, require that the encoding length of \(A \), \(b \) and \(c \) is polynomial in \(|V| \) and \(|E| \).