Exercises marked with a ★ can be handed in for bonus points. Due date is May 21.

Exercise 1
Recall that in class we defined, for \(k \in \mathbb{N} \)

\[
g_k = a_k g_{k-1} + g_{k-2}; \quad h_k = a_k h_{k-1} + h_{k-2} \quad \text{with} \quad g_{-1} = 1, g_{-2} = 0, h_{-1} = 0, h_{-2} = 1
\]

Show that for each \(k \in \mathbb{N} \):

- \(\frac{g_k}{h_k} = \langle a_0, \ldots, a_k \rangle \);
- \(g_{k+1} h_k - g_k h_{k+1} = (-1)^k \).

Exercise 2
Consider three points \(v_1, v_2, v_3 \in \mathbb{Z}^2 \) that do not lie on the same line.

- a) Show the following: the triangle with vertices \(v_1, v_2, v_3 \) does not contain an integer point other than its vertices if and only if the matrix \((v_2 - v_1, v_3 - v_2)\) is unimodular.

- b) Show that the previous statement cannot be extended to \(\mathbb{R}^3 \), providing linearly independent vectors \(v_1, v_2, v_3, v_4 \) such that \(\text{conv}\{v_1, v_2, v_3, v_4\} \) does not contain an integer different from its vertices but \(\det(v_2 - v_1, v_3 - v_1, v_4 - v_1) \neq \pm 1 \).

Exercise 3 (★)
Let \(v_1, \ldots, v_n \in \mathbb{Z}^2 \) and \(P = \text{conv}\{v_1, \ldots, v_n\} \). Let \(A, I, \) and \(B \) be respectively the area, the number of integer points in the interior, and the number of integer points on the boundary of \(P \). Prove that \(A = I + B/2 - 1 \).

Exercise 4 (★)
Implement the algorithm that computes the HNF of a given matrix.

Exercise 5
Let

\[
B = (b_1, \ldots, b_{i-1}, b_i, b_{i+1}, b_{i+2}, \ldots, b_n)
\]
and
\[C = (b_1, \ldots, b_{i-1}, b_{i+1}, b_i, b_{i+2}, \ldots, b_n)\]
be two lattice bases. Notice that \(C\) originates from \(B\) via swapping the \(i\)-th and \(i + 1\)-st column. Prove that \(B^*\) and \(C^*\) only differ in the \(i\)-th and \(i + 1\)-st column. Show further that
\[\|b_i^*\| \cdot \|b_{i+1}^*\| = \|c_i^*\| \cdot \|c_{i+1}^*\|\]
holds. What does this imply for \(\det(B)\) and \(\det(C)\)?
\((B^*\) and \(C^*\) are the output of the Gram-Schmidt process with input \(B\) and \(C\), respectively.\)

Exercise 6
Let \(p\) be an odd prime. Prove that \((p - 1)! \equiv -1 \pmod{p}\).