Exercises marked with a \star can be handed in for bonus points. Due date is May 24.

Exercise 1
Let $f, g \in \mathbb{Z}[x]$ be two polynomials with $\|f\|_\infty, \|g\|_\infty \leq 2^s$ of degree at most d. Let $n = \max\{d, s\}$. Show that $fg \in \mathbb{Z}[x]$ can be computed in time $O(M(n) \cdot d \log d)$ using the Fast Fourier Transform, where $M(n)$ is the time required to multiply two n-bit numbers.

Exercise 2 (\star)
Let $B = (b_1, \ldots, b_{i-1}, b_i, b_{i+1}, b_{i+2}, \ldots, b_n)$ and $C = (b_1, \ldots, b_{i-1}, b_{i+1}, b_i, b_{i+2}, \ldots, b_n)$ be two lattice bases. Notice that C originates from B via swapping the i-th and $i+1$-st column. Prove that B^* and C^* only differ in the i-th and $i+1$-st column. Show further that $\|b_i^*\| \cdot \|b_{i+1}^*\| = \|c_i^*\| \cdot \|c_{i+1}^*\|$ holds. What does this imply for $\det(B)$ and $\det(C)$?

Exercise 3
Let $K \subseteq \mathbb{R}^n$ be a convex body of volume $\text{vol}(K) \geq 2^n$ that is symmetric about the origin. Prove that K contains a nonzero integer point.

Exercise 4
Let $K \subseteq \mathbb{R}^n$ be a convex body of volume $\text{vol}(K) \geq k \cdot 2^n$ that is symmetric about the origin. Prove that K contains at least $2k$ nonzero integer points.

Exercise 5
Let p be an odd prime. Prove that $(p - 1)! \equiv -1 \pmod{p}$.

Exercise 6 (\star)
In this exercise you will prove that every prime number p with $p \equiv 1 \pmod{4}$ can be written as the sum of two square numbers $p = a^2 + b^2$, for $a, b \in \mathbb{N}$.

a) Show that the equation $q^2 \equiv -1 \pmod{p}$ has a solution.

Hint: You can use the result of the previous exercise by contradiction, or you can look at the group structure in detail.
b) Consider the lattice \(\Lambda \) generated by \(\begin{pmatrix} 1 & 0 \\ q & p \end{pmatrix} \) and the disk of radius \(\sqrt{p \cdot 2 - \varepsilon} \) around 0 for a small \(\varepsilon > 0 \).

i) Show that \(\|v\|^2 \) is divisible by \(p \) for each \(v \in \Lambda \).

ii) Show that there exists a \(v \in \Lambda \setminus \{0\} \) with \(\|v\|^2 = p \).

iii) Conclude that \(p \) is the sum of two squares.

c) Is there a prime \(p \) with \(p \equiv 3 \pmod{4} \) that can be written as the sum of two squares?