Exercises marked with a ★ can be handed in for bonus points. Due date is May 07.

Exercise 1 (★)
Develop an algorithm that, given an odd-degree polynomial \(f \in \mathbb{Z}[x] \) and \(\varepsilon > 0 \), computes an interval of length at most \(\varepsilon \) enclosing a root of \(f \) using binary search. This algorithm has to run in polynomial time in the encoding length of \(f \) and \(\varepsilon \). Prove the correctness of your algorithm.

Exercise 2
Let \(R = \mathbb{Z}_7 \) and \(S = \mathbb{Z}_{11} \) and consider the product ring \(T = R \times S \cong \mathbb{Z}_{77} \). Consider the following example about how roots of unity in the product ring don't relate to roots of unity in the component rings (compare also the next exercise!).

1. Show that \(\omega_1 = 2 \) is a primitive 3-rd root of unity modulo 7.
2. Show that \(\omega_2 = 4 \) is a primitive 5-th root of unity modulo 11.
3. Let \(\omega = 37 \). Prove that \(\omega \equiv \omega_1 \pmod{7} \) and \(\omega \equiv \omega_2 \pmod{11} \) and that \(\omega \) is a 15-th root of unity modulo 77 (that is, \(\omega^{15} \equiv 1 \pmod{77} \), and \(\omega^k \not\equiv 1 \pmod{77} \) for \(1 \leq k < 15 \)).
4. Prove that \(\omega \) is not a primitive root of unity modulo 77.

Exercise 3
Let \(R \) and \(S \) be commutative rings and consider their product ring \(T = R \times S \). Let \(\omega = (\omega_R, \omega_S) \in T \). Prove that \(\omega \) is a primitive \(n \)-th root of unity if and only if \(\omega_R \) and \(\omega_S \) are primitive \(n \)-th roots of unity in \(R \) and \(S \), respectively.

Exercise 4 (★)
Let \(R = \mathbb{Z}_{21} \). For every element \(x \in R \), determine whether it is in \(R^* \) (that is, whether it is invertible) and whether it is a zero divisor. Determine the order of every element \(x \in R^* \). Finally, determine which elements are primitive roots of unity.

Exercise 5
Let \(n \in \mathbb{N} \). Show that 2 is a primitive \(2n \)-th root of unity modulo \(2^n + 1 \) if and only if \(n \) is a power of 2.
Exercise 6
Let \(f = x^2 + 2x - 5 \) and \(g = x^2 + 3x + 2 \). Let \(N = 17 \) and \(\omega = 2 \in \mathbb{Z}_N \).

1. Show that \(\omega \) is an 8-th primitive root of unity in \(\mathbb{Z}_N \).

2. Use the discrete Fourier transform to compute \(f(\omega^i) \) and \(g(\omega^i) \mod N \), \(i = 0 \ldots 7 \).

3. Use the inverse discrete Fourier transform on \(f(\omega^i)g(\omega^i) \). Can you use the result to find \(fg \in \mathbb{Z}[x] \)?

Exercise 7
In this exercise we will use Fast Fourier Transform to prove the following:

\begin{itemize}
 \item The product of two \(N \)-bits integers can be computed in time \(O(N \log \log^6 N) \).
\end{itemize}

(a) Let \(U, V \) be two \(N \)-bit integers with \(N = 2^n \) for some \(n \in \mathbb{N} \). Also, let \(k = \lceil n/2 \rceil \) and \(\ell = \lfloor n - k \rfloor \). Write \(U \) and \(V \) as vectors \(\tilde{U} \) and \(\tilde{V} \) respectively, with \(K = 2^k \) components each.

(b) Consider the polynomials \(p(x) = \sum_{j=0}^{K-1} \tilde{U}_j x^j \) and \(q(x) = \sum_{j=0}^{K-1} \tilde{V}_j x^j \). Show that from the knowledge of the coefficients of their product \(r(x) \in \mathbb{Z}_M \) with \(M \) appropriate one can reconstruct the product of \(U \) and \(V \) in time \(O(N) \).

(c) Show how to compute the coefficients of \(r(x) \) using FFT and conclude the proof of (a).

(d) Based on (a) and on results seen in class, deduce an appropriate complexity bound for computing the product of two polynomials in \(\mathbb{Z}_M \) with \(M = 2^L + 1 \) and in \(\mathbb{Z} \), respectively.