Combinatorial Optimization

Fall 2010 Assignment Sheet 3

Exercise 1

- 1. Show that the unit simplex $\Delta = \text{conv}\{0, e_1, ..., e_n\} \subset \mathbb{R}^n$, where e_j are the standard unit vectors, has volume $\frac{1}{n!}$.
- 2. Show that the volume of the simplex conv $\{v_0, v_1, \dots, v_n\} \subset \mathbb{R}^n$ is $\frac{|\det(v_1 v_0, \dots, v_n v_0)|}{n!}$.

Exercise 2 (*)

Describe an algorithm that given as input

- an integral polyhedron $P = \{x \in \mathbb{R}^n \mid Ax \le b\}$, where $A \in \mathbb{R}^{m \times n}$ and $b \in \mathbb{R}^m$,
- an objective function vector $c \in \mathbb{Z}^n$,
- the optimal objective function value $z = \max\{c^T x \mid x \in P\}$, and
- a feasible point $x^* \in P$ with $z \frac{1}{2} \le c^T x^* \le z$

computes an inclusion-wise minimal optimal face $F = \{x \in \mathbb{R}^n \mid A'x = b'\}$ of P. The running time of your algorithm shall be bounded by a polynomial in n and m.

Exercise 3

Reduce the problem of finding a maximum weight matching to the problem of finding a maximum weight *perfect* matching. That is, find a way to transform, in polynomial time, any graph G with edge weights w into a graph G' with edge weights w' so that given a maximum weight perfect matching M' of G', one can easily deduce a maximum weight matching M of G.

Exercise $4 (\star)$

Let $\mathscr{F} \subseteq \{0,1\}^n$ and assume access to an oracle that given $\bar{x} \in \mathscr{F}$ and $\bar{c} \in \mathbb{Z}^n$ either

- asserts that $\bar{x} \in \mathcal{F}$ maximizes $\bar{c}^T x$ over $x \in \mathcal{F}$, or
- returns an $x \in \mathcal{F}$ such that $\bar{c}^T x > \bar{c}^T \bar{x}$.

Describe an algorithm that given $c \in \mathbb{Z}^n$ and an initial feasible solution $x \in \mathcal{F}$ computes an optimal solution of $\max\{c^Tx \mid x \in \mathcal{F}\}$ with a running time that is bounded by a polynomial in n and $\log|c|_{\infty}$.