Exercise 1

1. Show that the unit simplex \(\Delta = \text{conv}\{0, e_1, \ldots, e_n\} \subset \mathbb{R}^n \), where \(e_j \) are the standard unit vectors, has volume \(\frac{1}{n!} \).

2. Show that the volume of the simplex \(\text{conv}\{v_0, v_1, \ldots, v_n\} \subset \mathbb{R}^n \) is \(\frac{|\det(v_1-v_0, \ldots, v_n-v_0)|}{n!} \).

Exercise 2 (⋆)
Describe an algorithm that given as input
- an integral polyhedron \(P = \{x \in \mathbb{R}^n \mid Ax \leq b\} \), where \(A \in \mathbb{R}^{m \times n} \) and \(b \in \mathbb{R}^m \),
- an objective function vector \(c \in \mathbb{Z}^n \),
- the optimal objective function value \(z = \max\{c^T x \mid x \in P\} \), and
- a feasible point \(x^* \in P \) with \(z - \frac{1}{2} \leq c^T x^* \leq z \)
computes an inclusion-wise minimal optimal face \(F = \{x \in \mathbb{R}^n \mid A'x = b'\} \) of \(P \). The running time of your algorithm shall be bounded by a polynomial in \(n \) and \(m \).

Exercise 3
Reduce the problem of finding a maximum weight matching to the problem of finding a maximum weight perfect matching. That is, find a way to transform, in polynomial time, any graph \(G \) with edge weights \(w \) into a graph \(G' \) with edge weights \(w' \) so that given a maximum weight perfect matching \(M' \) of \(G' \), one can easily deduce a maximum weight matching \(M \) of \(G \).

Exercise 4 (⋆)
Let \(\mathcal{F} \subseteq \{0, 1\}^n \) and assume access to an oracle that given \(\bar{x} \in \mathcal{F} \) and \(\bar{c} \in \mathbb{Z}^n \) either
- asserts that \(\bar{x} \in \mathcal{F} \) maximizes \(\bar{c}^T x \) over \(x \in \mathcal{F} \), or
- returns an \(x \in \mathcal{F} \) such that \(\bar{c}^T x > \bar{c}^T \bar{x} \).

Describe an algorithm that given \(c \in \mathbb{Z}^n \) and an initial feasible solution \(x \in \mathcal{F} \) computes an optimal solution of \(\max\{c^T x \mid x \in \mathcal{F}\} \) with a running time that is bounded by a polynomial in \(n \) and \(\log|c|_{\infty} \).