Exercises marked with a ⋆ can be handed in for bonus points. Due date is March 22.

Exercise 1
Let $a, b \in \mathbb{N}$ be odd numbers with $a - b = 2^k$ for some $k \in \mathbb{N}$. Show that a and b are coprime.

Exercise 2 (⋆)
Let $f : \mathbb{N} \to \mathbb{R}_+$ be a monotone increasing function with $f(a) + f(b) \leq f(a + b)$. Show that $f(1) + f(2) + f(4) + f(8) + \ldots + f(n) = O(f(n))$.

Note: You may assume that n is a power of two.

Exercise 3
A floating point number $\hat{z} = a2^e$ is represented as a pair (a, e) of integers. We say that \hat{z} is a k-bit approximation of $z \in \mathbb{R}$ if a is a k-bit number and $|\hat{z} - z| \leq 2^{-k+1}z$. Let $M(k)$ be the time required to multiply two k-bit integers. The goal of this exercise is to show that a k-bit approximation of $1/b$ for $b \in \mathbb{N}$ can be computed in time $O(M(k))$.

1. Show how to multiply and add floating point numbers. Determine the time required for those operations.

2. Show that given a t-bit approximation x_n of $1/b$, one can compute a $(2t - c)$-bit approximation x_{n+1} of $1/b$ in time $O(M(t))$. Here, $c > 0$ is some constant.

Hint: Use Newton iteration applied to the function $f(x) = 1/x - b$. Note that to keep within an acceptable running time, you may only use $O(t)$ bits of b.

3. Show how to compute a k-bit approximation of $1/b$ in time $O(M(k))$.

Exercise 4
Show that given two numbers $a, b \in \mathbb{N}$ of length at most n, one can compute $\lfloor a/b \rfloor$ and $a \mod b$ in time $O(M(n))$. This shows that multiplication in \mathbb{Z}_N can be performed in time $O(M(\log N))$.

Exercise 5 (⋆)
There is a constant c such that for all $a \geq b > 1$ the Euclidean algorithm on (a, b) takes time at most $c \log(a) \log(b)$.
Exercise 6
Let $B = \{b_1, \ldots, b_n\} \subset \mathbb{R}^n$ be a set of linearly independent vectors. The lattice generated by B is the set of integer linear combinations $L = L(B) = \{\sum_{j=1}^{n} \lambda_j b_j | \lambda_1, \ldots, \lambda_n \in \mathbb{Z}\}$. Any set $B' \subset L$ of linearly independent vectors with $L(B') = L$ is called a basis of the lattice L.

1. Show that adding an integer multiple of one basis vector to another basis vector does not change the lattice generated by the basis.
2. Let $P = \{\sum_{j=1}^{n} \lambda_j b_j | 0 \leq \lambda_j < 1 \text{ for all } j = 1 \ldots n\}$ be the fundamental parallelepiped. Show that $P \cap L = \{0\}$.

Exercise 7
Let $\alpha > 0$ be a real number. Our goal is to find rational approximations of α with small denominator. Consider the line $L_\alpha = \{(x, y) \in \mathbb{R}^2 | y = \alpha x\}$ of slope α through the origin and define a sequence of vectors in the following way:

- $b_0 = e_1, b_1 = e_2$
- $b_{2j} = b_{2j-2} + \mu_{2j} b_{2j-1},$ where $\mu_{2j} \in \mathbb{Z}$ is maximal such that b_{2j} is not above L_α.
- $b_{2j+1} = b_{2j-1} + \mu_{2j+1} b_{2j},$ where $\mu_{2j+1} \in \mathbb{Z}$ is maximal such that b_{2j+1} is not below L_α.
- The sequence ends if $b_n \in L_\alpha$.

Show the following:

1. The sequence of b_n and μ_n is well-defined. If it is infinite, then the sequence of b_n is unbounded.
2. Every pair of adjacent vectors (b_n, b_{n+1}) in the sequence forms a lattice basis of \mathbb{Z}^2.
3. The slope of every $b_{2j} = (q, p)$ is a best approximation to α from below in the following sense: $\alpha - p/q = \min\{\alpha - p'/q' | p', q' \in \mathbb{Z}, 0 < q' \leq q, p'/q' \leq \alpha\}$. Similarly, the slope of every b_{2j+1} is a best approximation from above.
4. Suppose that $\alpha = p/q$ for some $p, q \in \mathbb{Z}$. Find and describe the relationship of the sequence of b_n and μ_n to the intermediate data generated by the Euclidean algorithm run on p and q.

2