Exercise 1
Show that the dual of the linear program \(\text{max}\{c^T x : x \in \mathbb{R}^n, \ A x \leq b, \ x \geq 0\} \) for \(A \in \mathbb{R}^{m \times n}, b \in \mathbb{R}^m \) and \(c \in \mathbb{R}^n \) can be interpreted as the linear program \(\text{min}\{b^T y : y \in \mathbb{R}^m, \ A^T y \geq c, \ y \geq 0\} \).

Hint: Understand the primal as \(\text{max}\{c^T x : x \in \mathbb{R}^n, (A - I) x \leq (b_0)\} \), and re-interpret the dual of this LP.

Exercise 2
We could not finish the proof the following theorem during the last lecture.

Theorem. A non-empty set \(F \subseteq \mathbb{R}^n \) is a face of \(P = \{x \in \mathbb{R}^n : A x \leq b\} \) if and only if \(F = \{x \in P : A' x = b'\} \) for a subset \(A' x \leq b' \) of \(A x \leq b \).

Notice that this sub-system \(A' x \leq b' \) could be “empty”. Here is the proof. However, a few details are missing that you should fill in.

Proof. Suppose that \(F = \{x \in P : A' x = b'\} \). Consider the vector \(c = 1^T A' \) and \(\delta = 1^T b' \). The inequality \(c^T x \leq \delta \) is valid for \(P \). It is satisfied with equality by each \(x \in F \). If \(x' \in P \setminus F \), then there exists an inequality \(a^T x \leq \beta \) of \(A' x \leq b' \) such that \(a^T x' < \beta \) and consequently \(c^T x' < \delta \). This shows \(\{x \in P : A' x = b'\} = \{x \in P : c^T x = \delta\} \) and thus that \(F \) is a face.

On the other hand, if \(F \) is a face, then there exists a valid inequality \(c^T x \leq \delta \) of \(P \) such that \(F = \{x \in P : c^T x = \delta\} \). If \(c = 0 \), then clearly \(F = P \) and the assertion follows. If \(c \neq 0 \), then since \(F \) is non-empty, linear programming duality implies

\[
\delta = \max\{c^T x : A x \leq b\} = \min\{b^T \lambda : A^T \lambda = c, \lambda \geq 0\}.
\]

Thus there exists a \(\lambda^* \in \mathbb{R}^m_{\geq 0} \) such that \(c = \lambda^*^T A \) and \(\delta = \lambda^*^T b \). Let \(A' x \leq b' \) be the subsystem of \(A x \leq b \) which corresponds to strictly positive entries of \(\lambda^* \). **One has** \(F = \{x \in P : A' x = b'\} \). \(\square \)

Provide a formal proof of the claims in **boldface**.

Exercise 3
Determine a maximum weight matching of the graph below. Provide of proof of optimality.
by determining a feasible dual solution to the linear program

\[
\begin{align*}
\max & \quad \sum_{e \in E} w(e) x(e) \\
\text{subject to} & \quad \sum_{e \in \delta(v)} x(e) \leq 1 \\
& \quad \sum_{e \in E(U)} x(e) \leq \lfloor |U|/2 \rfloor \\
& \quad 0 \leq x(e)
\end{align*}
\]

whose objective value coincides with the weight of your matching.

Exercise 4 (*)

Show the following: A face \(F \) of \(P = \{ x \in \mathbb{R}^n : Ax \leq b \} \) is inclusion-wise minimal if and only if it is of the form \(F = \{ x \in \mathbb{R}^n : A'x = b' \} \) for some subsystem \(A'x \leq b' \) of \(Ax \leq b \).