\[\begin{align*}
\min & \quad c^T x \\
\text{s.t.} & \quad A x \leq b
\end{align*} \]
Programmation linéaire

- Exemple

\[
\min c^T x \\
\text{s.t. } A x \leq b
\]
Production de boissons minérales

<table>
<thead>
<tr>
<th></th>
<th>A</th>
<th>B</th>
<th>Profit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Spring</td>
<td>3L</td>
<td>8L</td>
<td>100 c.u.</td>
</tr>
<tr>
<td>Websi</td>
<td>6L</td>
<td>4L</td>
<td>125 c.u.</td>
</tr>
</tbody>
</table>

Question: Comment maximiser la profit ?

500L Spring ne sont pas à produire ;
2L 400L Websi $3.5 + 6.4 = 15 + 24 = 39 L$ (A)
Le problème d’optimisation

- Utilisation de A et B avec un profit pour 100 l:

<table>
<thead>
<tr>
<th>A</th>
<th>B</th>
<th>Profit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Spring</td>
<td>3 l</td>
<td>8 l</td>
</tr>
<tr>
<td>Nebsi</td>
<td>6 l</td>
<td>4 l</td>
</tr>
</tbody>
</table>

- En Stock:
 - [30 l] de A et [44 l] de B

- Capacité des tonneaux:
 - Spring [500 l], Nebsi [400 l]

\[
\text{plan de production:} \\
(x_1, x_2) \in \mathbb{R}^2 \\
x_1 \cdot 100 \in \text{Spring} \\
x_2 \cdot 100 \in \text{Nebsi}
\]

\[E: (3, 4) \text{ plan qui est inadmissible}\]

\[\text{Objectif}\]

\[\text{Maximize } 100 \cdot x_1 + 125 \cdot x_2\]

\[\text{Subject to:}\]

\[3 \cdot x_1 + 6 \cdot x_2 \leq 30\]

\[8 \cdot x_1 + 4 \cdot x_2 \leq 44\]

\[x_1 \leq 5\]

\[x_2 \leq 4\]

\[x_1 \geq 0\]

\[x_2 \geq 0\]
Plans de production faisables

\[
\begin{align*}
\text{max} & \quad 100 \cdot x_1 + 125 \cdot x_2 \\
\text{s.c.} & \quad 3 \cdot x_1 + 6 \cdot x_2 \leq 30 \\
& \quad 8 \cdot x_1 + 4 \cdot x_2 \leq 44 \\
& \quad x_1 \leq 5 \\
& \quad x_2 \leq 4 \\
& \quad x_1 \geq 0 \\
& \quad x_2 \geq 0
\end{align*}
\]
Une solution optimale

\[\text{max } x_1 \cdot 100 + x_2 \cdot 125 \]
Une solution optimale

\[(x_1, x_2) \in \mathbb{R}^2 : 200x_1 + 125x_2 = 250 \]

\[\beta = 250\]
Une solution optimale

\[\beta = 500 \]

\[\beta = 250 \]
Une solution optimale

\[
\begin{align*}
3x_1 + 6x_2 & \leq 30 \\
8x_1 + 4x_2 & \leq 44 \\
3x_1 + 6x_2 & = 30 \\
8x_1 + 4x_2 & = 44
\end{align*}
\]

Le plan de production optimal est de produire
400 l de Spring
300 l de Nebsi.
Une solution optimale

$\beta = 775$

$\beta = 500$

$\beta = 250$

(4, 3)
Leçon 1

Exemple: Certifier l’optimalité

\[\min c^T x \]
\[\text{s.t. } A x \leq b \]
Certifier l'optimalité

\[\beta = 775 \]

\[20x_1 + 125x_2 \leq 500 \]

(1) \[50x_1 + 25x_2 \leq 275 \]

(2) \[700x_1 + 125x_2 = 775 \]

Tous les points admissibles sont des sommets du polygone de l'objet.

Fonction Objectif \(\leq 775 \) à optimiser: \(70x_1 + 135x_2 \leq 775 \)

[Image of a graph with points and lines indicating a feasible region]
maximiser
sous contraintes

\[94 \cdot x_1 + 128 \cdot x_2 \]
\[3 \cdot x_1 + 6 \cdot x_2 \leq 30 \]
\[8 \cdot x_1 + 4 \cdot x_2 \leq 44 \]
\[x_1 \leq 5 \]
\[x_2 \leq 4 \]
\[x_1 \geq 0 \]
\[x_2 \geq 0 \]

Profit de \((4, 3)\): \(94 \cdot 4 + 128 \cdot 3 = 760\)

Est \((4, 3)\) le plan de production optimal?

- Non, parce qu'il y a un plan de production faisable avec plus de profit.
- Oui, parce que les deux premières inégalités donnent une borne supérieure de 760 sur le profit de tous les plans de production faisables.
 Ceci peut être démontré en multipliant ces inégalités par 11 et 6 respectivement et en additionnant le résultat des inégalités.
- Oui, parce que les deux premières inégalités donnent une borne supérieure de 760 sur le profit de tous les plans de production faisables.
 Ceci peut être démontré en multipliant ces inégalités par 18 et 5 respectivement et en additionnant le résultat des inégalités.
Programmation linéaire

- Définition de la programmation linéaire
- Quelques notations utiles

\[
\min c^T x \\
\text{s.t. } A x \leq B
\]
Qu’est-ce qu’un programme linéaire?

Un programme linéaire est une fonction objectif linéaire

\[c_1x_1 + \cdots + c_nx_n \]

et des inégalités linéaires

\[a_{11}x_1 + \cdots + a_{1n}x_n \leq b_1 \]
\[\vdots \]
\[a_{m1}x_1 + \cdots + a_{mn}x_n \leq b_m \]

Trouver \(x_1, \ldots, x_n \in \mathbb{R} \) qui maximise la fonction objectif parmi tous \(x_1, \ldots, x_n \in \mathbb{R} \) qui satisfont les inégalités linéaires.
Retour à l'exemple d'introduction

maximiser \[100 \cdot x_1 + 125 \cdot x_2 \]
sous contraintes
\[3 \cdot x_1 + 6 \cdot x_2 \leq 30 \]
\[8 \cdot x_1 + 4 \cdot x_2 \leq 44 \]
\[x_1 \leq 5 \]
\[x_2 \leq 4 \]
\[x_1 \geq 0 \quad \Rightarrow \quad -x_1 \leq 0 \]
\[x_2 \geq 0 \quad \Rightarrow \quad -x_2 \leq 0 \]

\[a_1 x_1 + \cdots + a_n x_n \geq \beta \quad \Rightarrow \quad -a_1 x_1 + \cdots + -a_n x_n \leq -\beta \]
Notation matricielle

\[\text{max } c_1 x_1 + \cdots + c_n x_n \]

s.c. \[a_{11} x_1 + \cdots + a_{1n} x_n \leq b_1 \]

\[\vdots \]

\[a_{m1} x_1 + \cdots + a_{mn} x_n \leq b_m. \]

\[\begin{array}{c}
\max \ c^T \cdot x \\
A x \leq b \\
x \in \mathbb{R}^n
\end{array} \]

\[\text{max} \{ c^T \cdot x : x \in \mathbb{R}^n, A x \leq b \}. \]

\[b = \begin{pmatrix}
b_1 \\
\vdots \\
b_m
\end{pmatrix} \]

\[C = \begin{pmatrix}
c_1 \\
\vdots \\
c_n
\end{pmatrix} \quad A = \begin{pmatrix}
a_{11} & \cdots & a_{1n} \\
\vdots & \ddots & \vdots \\
a_{m1} & \cdots & a_{mn}
\end{pmatrix} \]
Retour à l’exemple d’introduction

\[
\begin{align*}
\max \quad & 100 \cdot x_1 + 125 \cdot x_2 \\
\text{s. c.} \quad & 3 \cdot x_1 + 6 \cdot x_2 \leq 30 \\
\quad & 8 \cdot x_1 + 4 \cdot x_2 \leq 44 \\
\quad & x_1 \leq 5 \\
\quad & x_2 \leq 4 \\
\quad & x_1 \geq 0 \\
\quad & x_2 \geq 0 \\
\end{align*}
\]

\[
\max \quad c^T x \\
\text{A} \cdot x \leq b \\
\text{x} \in \mathbb{R}^2
\]

\[
\begin{pmatrix}
100 \\
125
\end{pmatrix}
\]

\[
\begin{pmatrix}
3 & 6 \\
8 & 4 \\
1 & 0 \\
0 & 1
\end{pmatrix}
\]

\[
\begin{pmatrix}
30 \\
44 \\
5 \\
4
\end{pmatrix}
\]
Max vs. Min

\[
\begin{align*}
\min\{5, 4, -3\} &= -3 \\
\max\{-5, -4, 3\} &= 3
\end{align*}
\]

\[
\begin{align*}
\min_{x'} \mathbf{c}^\top x &; \mathbf{A}x \leq \mathbf{b}, x \in \mathbb{R}^n \\
= &\ -\max_{x'} \mathbf{1}^\top \mathbf{c}^\top x &; \mathbf{A}x \leq \mathbf{b}, x \in \mathbb{R}^n
\end{align*}
\]
Qu’est-ce que A, b et c dans la notation matricielle
$max\{c^T x : x \in \mathbb{R}^n, \quad Ax \leq b\}$ du
programme linéaire suivant:

$$
\begin{align*}
\text{min} & \quad 2 \cdot x_1 + 3 \cdot x_2 \\
\text{s.t.:} & \quad 2 \cdot x_1 + x_2 \geq 2 \\
& \quad x_1 + x_2 \leq 10 \\
& \quad x_1 \geq 0 \\
& \quad x_2 \geq 0 \\
\end{align*}
$$

$$
\begin{align*}
= & \quad \max \quad -2 \cdot x_1 - 3 \cdot x_2 \\
& \quad -2 \cdot x_1 - x_2 \leq -2 \\
& \quad x_1 + x_2 \leq 10 \\
& \quad -x_1 \leq 0 \\
& \quad -x_2 \leq 0
\end{align*}
$$

$$
A = \begin{pmatrix}
-2 & -1 \\
1 & 1 \\
-1 & 0 \\
0 & -1
\end{pmatrix} \quad b = \begin{pmatrix}
-2 \\
10 \\
0 \\
0
\end{pmatrix} \quad c = \begin{pmatrix}
-2 \\
0 \\
-3
\end{pmatrix}
$$
Un point \(x \in \mathbb{R}^n \) est appelé *admissible* (ou *faisable*), si \(x \) satisfait toutes les inégalités linéaires. S'il y a des solutions admissibles d'un programme linéaire, le programme linéaire lui-même est *admissible*.
Solutions optimales

Un point \(x \in \mathbb{R}^n \) qui est admissible est une *solution optimale* du programme linéaire si \(c^T x \geq c^T y \) pour tous les points \(y \in \mathbb{R}^n \) qui sont admissibles.

\[\max x^2 \]
Un programme linéaire est borné si une constante $M \in \mathbb{R}$ existe telle que $c^T x \leq M$ pour tous les $x \in \mathbb{R}^n$ qui sont admissibles.
Le programme linéaire

\[
\begin{align*}
\text{max} & \quad x_1 \\
\text{s.t.} & \quad x_1 + x_2 \leq 1 \\
& \quad x_1 \geq 1
\end{align*}
\]

- inadmissible
- est admissible

\[(1, 0) \text{ admissible} \]

\[\forall k \geq 1: \ (k, -k) \text{ est admissible} \]

Donnée un \(k \in \mathbb{R} \)

\[k^* = \max \{ k + 1, 13 \} \]

\[(k^*, -k^*) \text{ est admissible} \]

\[2 + k^* > 17 \quad \text{F.O.} \]
Linear and Discrete Optimization

Programmation linéaire

- Algèbre linéaire vs optimisation linéaire
- Régression linéaire
- Classification

\[
\begin{align*}
\min & \quad c^T x \\
\text{s.t.} & \quad A x \leq b
\end{align*}
\]
Algèbre linéaire vs optimisation linéaire

Résoudre le système linéaire

Pour $A \in \mathbb{R}^{m \times n}$ et $b \in \mathbb{R}^m$, déterminer $x \in \mathbb{R}^n$ tel que $Ax = b$ ou affirmer qu’un tel x n’existe pas.

- Elimination de Gauss-Jordan

$$\max \quad 0^T \cdot x$$
$$Ax \leq b$$
$$A^T x = b \iff -A^T x \leq -b$$
$$x \in \mathbb{R}^n$$
\[A \in \mathbb{R}^{m \times n} \]

Noyau : \[\text{Ker}(A) = \{ x \in \mathbb{R}^n : A x = 0 \} \]

Image : \[\text{Im}(A) = \{ y \in \mathbb{R}^m : \exists x \in \mathbb{R}^n, A x = y \} \]
Soit $A \in \mathbb{R}^{mn}$ et $b \in \mathbb{R}^m$. Le programme linéaire

$$\max\{c^T x : x \in \mathbb{R}^n, Ax = b\}$$

est admissible et non-borné si

- $b \in \ker(A)$
- $b \in \text{im}(A)$ nécessaire
- $b \in \text{im}(A)$ et $c \in \ker(A) \setminus \{0\}$ non borné

La réponse juste

$A \cdot c = 0 \implies A(x^* + x \cdot c) = b$ pour $x \in \mathbb{R}$

$A \cdot c = b \implies c^T (x^* + x \cdot c) = c^T x^* + x \cdot c$ pour $x \in \mathbb{R}$

$b \in \text{im}(A) \implies \exists x^* \in \mathbb{R}^n$
Régression linéaire

- Points donnés \((y_i, x_i) \in \mathbb{R}^2 \ i = 1, \ldots, n\)
- Trouver une droite ajustée \(y = ax + b\) de telle façon que \(ax_i + b \approx y_i\)
- Déviation: \(\sum_{i=1}^n (y_i - ax_i - b)^2\)
- Déviation: \(\sum_{i=1}^n |y_i - ax_i - b|\)
Régression linéaire

$$\min \sum_{i=1}^{n} |y_i - ax_i - b|$$

$$a, b \in \mathbb{R}$$
Régression linéaire

\[
\min \sum_{i=1}^{n} |y_i - ax_i - b|
\]

\[a, b \in \mathbb{R}\]
Régression linéaire

\[
\min \sum_{i=1}^{n} |y_i - ax_i - b|
\]

\[a, b \in \mathbb{R}\]

L'astuce: Modéliser la valeur absolue \(|y_i - ax_i - b|\) par une variable \(h_i\) qui satisfait

\[
h_i \geq y_i - ax_i - b
\]

\[
h_i \geq -(y_i - ax_i - b)
\]
Régression linéaire

\[\min \sum_{i=1}^{n} |y_i - ax_i - b| \quad a, b \in \mathbb{R} \]

L’astuce: Modéliser la valeur absolue \(|y_i - ax_i - b|\) par une variable \(h_i\) qui satisfait

\[
\begin{align*}
 h_i & \geq y_i - ax_i - b \\
 h_i & \geq -(y_i - ax_i - b)
\end{align*}
\]

\[
\begin{align*}
 \min & \quad \sum_{i=1}^{n} h_i \\
\text{s.t.:} & \quad h_i \geq y_i - ax_i - b, \quad i = 1, \ldots, n \\
 & \quad h_i \geq -y_i + ax_i + b, \quad i = 1, \ldots, n
\end{align*}
\]

\[\text{VARS:} \quad h_1, \ldots, h_n, a, b \]
L’astuce: Modéliser la valeur absolue $|y_i - ax_i - b|$ par une variable h_i qui satisfait

\[
\begin{align*}
 h_i & \geq y_i - ax_i - b \\
 h_i & \geq -(y_i - ax_i - b)
\end{align*}
\]

\[
\begin{align*}
 \min & \quad \sum_{i=1}^{n} h_i \\
 \text{s.t.:} & \quad h_i \geq y_i - ax_i - b, \quad i = 1, \ldots, n \\
 & \quad h_i \geq -y_i + ax_i + b, \quad i = 1, \ldots, n
\end{align*}
\]
Classification

- Pour m points rouges $x_1, \ldots, x_m \in \mathbb{R}^k$ et n points bleus $y_1, \ldots, y_n \in \mathbb{R}^k$
- Trouver $a \in \mathbb{R}^k$ et $\beta \in \mathbb{R}$ tel que

$$a^T x_i > \beta, \quad i = 1, \ldots, m \quad \text{et} \quad a^T y_j < \beta, \quad j = 1, \ldots, n$$

Non span : $i = 1, \ldots, m ; \quad a^T x_i \geq \beta + 1$

$\max_{a^T} \sigma (a^{\beta})$

$(a, \beta) \ \text{admisible} \quad a \in \mathbb{R}^k, \beta \in \mathbb{R}$

\[a^T x = \beta \]
Le PL est admissible si et seulement s’il existe un classificateur.

\[a^T x = \beta \]

\[a_i^T x_i = \beta + \varepsilon \quad i = 1, \ldots, m \]

\[a_j^T y_j = \beta - \varepsilon \quad j = 1, \ldots, n \]

alors \(\exists \frac{1}{\varepsilon} \)

alors \(\left(\frac{a_i}{\varepsilon}, \frac{1}{\varepsilon} \right) \)

alors \ \text{not admissible.} \]
Classification