Summary of last lecture

Primary objectives:

- Linear programming: Example, Definition ✔
- The standard form ✔
- Basic feasible solutions ✔
- Simplex algorithm
- Along the way: Develop your own toy-solver in C++ first steps
- Use of modeling languages and efficient LP-solvers
- Constructing dedicated bond-portfolio
Recap

We assume that LPs are in standard form, where $A \in \mathbb{R}^{m \times n}$ has full row-rank:

$$\begin{align*}
\min & \quad c^T x \\
A x &= b \\
x &\geq 0.
\end{align*}$$

- $x^* \in \mathbb{R}^n$ is called **basic solution**, if $Ax^* = b$ and $\text{rank}(A_J) = |J|$, where $J = \{j \mid x^*(j) \neq 0\}$; Basic solution x^* is **feasible basic solution**, if $x^* \geq 0$

- **Basis** is set of indices $B \subseteq \{1, \ldots, n\}$ with $\text{rank}(A_B) = m$ and $|B| = m$

- $x^* \in \mathbb{R}^n$ with $A_Bx_B^* = b$ and $x^*(j) = 0$ for all $j \notin B$ is basic solution associated to **Basis** B
Recap

- If LP has optimal solution, the LP has optimal basic solution
- We can enumerate all basic solutions and thus solve LPs (inefficient!)

Question
Do we have to enumerate all basic solutions?

Principle of Simplex Algorithm
Move from feasible basic solution to the next, thereby, if possible, improving the objective value, until optimal solution is found.
Moving a new index into the basis

- Consider Basis B with x^* feasible basic solution associated to B
- Choose index $j \notin B$
- Raise $x^*(j)$ from 0 to $\theta > 0$
 - The other non-basic variables $x(k), k \in B \cup \{j\}$ shall remain unchanged
 - To maintain feasibility, the other basic variables might have to change
- Transition from x^* to $x^* + \theta \cdot d$

Requirements on d

- $d(j) = 1$
- $d(k) = 0, k \in \overline{B}, k \neq j$
- $A(x^* + \theta \cdot d) = b$ for all $\theta > 0$; since $Ax^* = b$ and $\theta > 0$ this means $Ad = 0$.
- Alltogether $A_B \cdot d_B + a^j = 0$ and since B Basis (A_B invertible) one has $d_B = -A_B^{-1} a^j$
j-th basic direction

Let B be a basis and $j \notin B$. The vector d with $d(j) = 1$, $d(k) = 0$, $k \in \overline{B}$, $k \neq j$ and $d_B = -A_B^{-1}a^j$ is called *j*-th basic direction of B.

At the transition from x^* to $x^* + \theta d$ the objective function changes by the amount

$$
\theta \cdot c^T d = \theta(-c_B^T A_B^{-1} a^j + c(j)) = \theta \cdot (c(j) - c_B^T A_B^{-1} a^j)
$$

The value $(c(j) - c_B^T A_B^{-1} a^j)$ represents the increase of the cost for $\theta = 1$.

Reduced costs

Let B be a basis. For $j \in \{1, \ldots, n\}$ the numbers

$$
\bar{c}(j) = c(j) - c_B^T A_B^{-1} a^j
$$

are called the reduced costs of the variables $x(j)$.
Consider the LP \(\min \{ c^T x \mid Ax = b, x \geq 0 \} \) with

\[
A = \begin{pmatrix} 1 & 1 & 1 & 1 \\ 2 & 0 & 3 & 4 \end{pmatrix} \quad \text{and} \quad b = \begin{pmatrix} 2 \\ 2 \end{pmatrix}.
\]

- Choose \(B = \{1, 2\} \)
- \(A_B = \begin{pmatrix} 1 & 1 \\ 2 & 0 \end{pmatrix} \) is invertible and thus \(B \) is a basis
- Setting \(x(3) = x(4) = 0 \) and \(x_B = A_B^{-1} b \) we obtain the feasible basic solution \(x^* = (1, 1, 0, 0) \)
- The third basic direction is obtained as follows.
 One has \(d(3) = 1, d(4) = 0 \) and

\[
d_B = \begin{pmatrix} d(1) \\ d(2) \end{pmatrix} = -A_B^{-1} a^3 = - \begin{pmatrix} 0 & 1/2 \\ 1 & -1/2 \end{pmatrix} \begin{pmatrix} 1 \\ 3 \end{pmatrix} = \begin{pmatrix} -3/2 \\ 1/2 \end{pmatrix}
\]

- The reduced cost of 3 is thus \(\bar{c}(3) = -\frac{3}{2} c(1) + \frac{1}{2} c(2) + c(3) \).
A criterion for optimality

Lemma 2.3

Let x^* be a feasible basic solution associated to a basis B, if $c \geq 0$, then x^* is an optimal solution of the LP.

Before we prove this Lemma, we come to a fundamental concept in linear programming. We will need it for example to prove the fundamental theorem of asset pricing.
Let
\[\min\{c^T x \mid Ax = b, \ x \geq 0\} \] (2)
be an LP in standard form. The linear program
\[\max\{b^T y \mid A^T y \leq c\} \] (3)
in inequality standard form is the dual program of the LP (2). The LP (2) is called the primal program.
Weak duality

Theorem (Weak duality)

Let x^* be a feasible solution of the primal and y^* be a feasible solution of the dual. One has

$$b^T y^* \leq c^T x^*. \quad (4)$$

Proof

Since $b = Ax^*$, one has

$$b^T y^* = x^* A^T y^*. \quad (5)$$

Since furthermore $A^T y^* \leq c$ and $x^* \geq 0$, one has

$$x^* A^T y^* \leq x^* c = c^T x^*. \quad (6)$$

Together, we obtain the desired property:

$$b^T y^* \leq c^T x^*.$$

Proof of Lemma 2.3

Recap: \(x^* \) is feasible basic solution defined by basis \(B \) and

\[
\overline{c}(j) = c(j) - c_B^T A_B^{-1} a^j \geq 0 \text{ for all } j \in \{1, \ldots, n\}. \tag{5}
\]

(5) can be re-written as

\[
c - A^T A_B^{-1}^T c_B \geq 0 \iff A^T A_B^{-1}^T c_B \leq c. \tag{6}
\]

\(y^* = A_B^{-1}^T c_B \) is feasible solution of the dual \(\max \{b^T y \mid A^T y \leq c\} \) LP of the primal \(\min \{c^T x \mid Ax = b, \ x \geq 0\} \).

Objective value:

\[
b^T y^* = (A x^*)^T y^*
\]

\[
= (A_B x_B^*)^T y^*
\]

\[
= (A_B x_B^*)^T A_B^{-1}^T c_B
\]

\[
= x_B^*^T A_B^T A_B^{-1}^T c_B
\]

\[
= c^T x^*
\]
Degeneracy

Question
Is the following assertion true:
If the reduced cost $\bar{c}(j) < 0$ for one $j \in \{1, \ldots, n\}$, then the feasible basic solution x^* is not optimal.

Answer is no!

- Let x^* be a feasible basic solution associated to basis B, $j \notin B$ and d the j-th basic direction.
- If $x^*(\ell) = 0$ for one $\ell \in B$, then $x^* + \theta \cdot d$ is for all $\theta > 0$ infeasible (If also $d(\ell) < 0$)

Such problematic basic feasible solutions are called degenerate

A basic solution x^* of a LP is called degenerate, if $|J| < m$, where $J = \{j \mid x^*(j) > 0\}$.
A limited converse of Lemma 2.3

Lemma 2.4

Let B be a basis and x^* a feasible basic solution associated to B. If x^* is non-degenerate and $\overline{c}(j) < 0$ for a $j \in \{1, \ldots, n\}$, then x^* is not optimal.

Proof

- Let $d \in \mathbb{R}^n$ be the j-th basic direction of B.
- One has $Ad = 0$, $d(j) = 1$ and $d(k) = 0$ for all $k \in \overline{B}$, $k \neq j$.
- $\overline{c}(j)$ denotes the increase of the objective function at the transition from x^* to $x^* + d$, Thus $\overline{c}(j) = c^T d$.
- Since $x^*_B > 0$ there exists a $\theta > 0$ with $x^* + \theta \cdot d \geq 0$ and therefore $x^* + \theta \cdot d$ is feasible solution.
- $c^T (x^* + \theta \cdot d) = c^T x^* + \theta \cdot c^T d < c^T x^*$
Optimal Basis

Optimal basis

Let $B \subseteq \{1, \ldots, n\}$ be a basis of the LP $\min \{c^T x \mid Ax = b, x \geq 0\}$. B is optimal, if the following conditions hold:

- $A_B^{-1} b \geq 0$ basic solution is feasible
- $y^* = A_B^{-1T} c_B$ is feasible dual solution or equivalently the reduced costs \tilde{c} of B are non-negative

Observation

An optimal basis yields an optimal basic feasible solution, whereas an optimal basic feasible solution can be associated to bases which are not optimal, since the reduced costs might be negative.
Iteration of simplex method (non-degenerate case)

x^* non-degenerate feasible basic solution with basis B; \bar{c} the vector of the reduced costs

- If $\bar{c} \geq 0$, then x^* is optimal
- If $\bar{c}(j) < 0$ for a j then there exists $\theta > 0$ with $x^* + \theta \cdot d$ feasible, where d is j-th basic direction
- By increasing θ the variable $x(j)$ becomes positive and all other non-basic variables remain 0
- We say that j enters the basis
- Since the costs in direction d are strictly decreasing, one should advance as much as possible:
 \[\theta^* = \max\{\theta \geq 0 \mid x^* + \theta \cdot d \text{ feasible}\}. \]

- The associated (negative) increase of the objective is:
 \[\theta^* \cdot c^T d = \theta^* \cdot \bar{c}(j). \]
- Since $Ad = 0$, one has $A(x^* + \theta \cdot d) = Ax^* = b$
- The only danger to feasibility is caused by possibly violating the $x \geq 0$ constraint
We distinguish two cases:

a) If $d \geq 0$, then one has $x^* + \theta d \geq 0$ for all $\theta \geq 0$, the Vector $x^* + \theta d$ never becomes infeasible by increasing θ, one can choose $\theta = \infty$ The LP is unbounded

b) If $d(i) < 0$, for some $i \in \{1, \ldots, n\}$, the constraint $x^*(i) + \theta d(i) \geq 0$ implies $\theta \leq -x^*(i)/d(i)$

Let $K \subseteq \{1, \ldots, n\}$ be defined by $K = \{i \mid d(i) < 0\}$

Largest possible value for θ is given by formula

$$\theta^* = \min_{\{i \in K\}} -\frac{x^*(i)}{d(i)} \quad (7)$$

Since $d(i) \geq 0$, for $i \in \overline{B}$, one has $K \subseteq B$.

Observe that $\theta^* > 0$, since $x^*_B > 0$ (non-degenerate x^*)
Consider LP min\{c^T x \mid Ax = b, x \geq 0\} with

\[A = \begin{pmatrix} 1 & 1 & 1 & 1 \\ 2 & 0 & 3 & 4 \end{pmatrix} \text{ and } b = \begin{pmatrix} 2 \\ 2 \end{pmatrix}. \]

- Choose \(B = \{1, 2\} \). Then one has \(A_B = \begin{pmatrix} 1 & 1 \\ 2 & 0 \end{pmatrix} \), thus \(B \) is basis.

- Setting \(x(3) = x(4) = 0 \) and \(x_B = A_B^{-1} b \) one obtains feasible basic solution \(x^* = (1, 1, 0, 0) \).

- 3-rd basic direction: One has \(d(3) = 1, d(4) = 0 \) and

\[
d_B = \begin{pmatrix} d(1) \\ d(2) \end{pmatrix} = -A_B^{-1} d^3 = -\begin{pmatrix} 0 & 1/2 \\ 1 & -1/2 \end{pmatrix} \begin{pmatrix} 1 \\ 3 \end{pmatrix} = \begin{pmatrix} -3/2 \\ 1/2 \end{pmatrix}
\]

- The reduced costs of this direction are

\[\bar{c}(3) = -\frac{3}{2} c(1) + \frac{1}{2} c(2) + c(3). \]
Example continued

- We assume that \(c = (2, 0, 0, 0)^T \) thus \(c_3 = -3 \)
- Basic direction for \(j = 3 \) is \(d = (-3/2, 1/2, 1, 0) \).
- Consider \(y = x^* + \theta d \), for \(\theta > 0 \).
- Only component of \(y \) which is decreasing is \(y_1 \) (since \(d(1) < 0 \))
- Maximal value of \(\theta \) is therefore \(\theta^* = -x_1^*/d(1) = 2/3 \)
- New point \(y^* = x^* + \frac{2}{3} d = (0, 4/3, 2/3, 0) \).
- The associated columns \(a^2, a^3 \) are linear independent and \(\bar{B} = \{2, 3\} \) is new basis
- 1 has left the basis and 3 has entered the basis
If θ^* finite, we arrive at new feasible solution $y^* = x^* + \theta^* d$

Since $x(j)^* = 0$ and $d(j) = 1$, one has $y(j)^* = \theta^* > 0$

Let ℓ be an index which attains minimum in (7)

We then have $d(\ell) < 0$ and $y^*(\ell) = x(\ell)^* + \theta^* d(\ell) = 0$

Basic variable $x(\ell)$ becomes 0 while non-basic variable $x(j)$ is now positive

This motivates to replace in B the index ℓ with j

$$B' = (B \setminus \{\ell\}) \cup \{j\}. \quad (8)$$
B' is basis

Theorem 2.5

a) \(\text{rank}(A_{B'}) = m \)
b) \(y^* = x^* + \theta^* d \) is basic solution associated to \(B' \)

Proof

a) We need to show that columns of \(A_{B'} \) are linearly independent

Consider \(M = \{ i \mid d(i) \neq 0, i \neq j \} \subseteq B \) and observe that \(\ell \in M \)

One has (since \(Ax^* = b \))

\[
\alpha^\ell = - \sum_{i \in M} d(i) \alpha^i \quad (9)
\]

Assume: Vectors \(\alpha^i, i \in B' \) are linearly dependent
Proof cont.

Since columns of A_B and in particular those of $A_{B \setminus \{\ell\}}$ linearly independent, a^ℓ must be in the span of the vectors a^i, $i \in B \setminus \{\ell\}$ Consequently, there are real numbers $\nu(i)$, $i \in B \setminus \{\ell\}$ with

$$a^\ell = \sum_{i \in B \setminus \{\ell\}} \nu(i) a^i. \quad (10)$$

Via subtracting equation (9) from the equation (10) we obtain

$$\sum_{i \in (B \setminus \{\ell\}) \setminus M} \nu(i) a^i + \sum_{i \in M \setminus \{\ell\}} (\nu(i) + d(i)) a^i + d(\ell) a^\ell = 0 \quad (11)$$

which shows that the columns of A_B are linearly dependent (contradiction!)

b) Is clear, since y^* is basic feasible solution associated to B'.

$(y^* (i) \neq 0 \implies i \in B')$
One iteration of Simplex Algorithm

1. Start with basic feasible solution x^* associated to basis B
2. Compute reduced costs $\bar{c}(j) = c(j) - c_B^T A_B^{-1} a^j$, for all $j \in \bar{B}$
3. If $\bar{c} \geq 0$, then is x^* optimal and Simplex terminates
4. Otherwise choose $j \in \bar{B}$ with $\bar{c}(j) < 0$
5. Compute $d_B = -A_B^{-1} a^j$
6. If $d_B \geq 0$, then $\theta^* = \infty$ and optimal value of LP is $-\infty$ and Simplex terminates
7. If $K = \{j \in B \mid d(j) < 0\} \neq \emptyset$ set

$$\theta^* = \min_{i \in K} -\frac{x^*(i)}{d(i)}$$

8. Choose ℓ such that $\theta^* = -\frac{x(\ell)}{d(\ell)}$ and replace ℓ by j in B
9. New feasible basic solution is $y^* = x^* + \theta \cdot d$
Theorem 2.6

If $\min \{ c^T x \mid Ax = b, x \geq 0 \}$ is LP with nonempty feasible solution set such that no feasible basic solution is degenerate, then the simplex algorithm terminates after finitely many steps and outputs one of the following:

a) An optimal basis with the associated optimal basic feasible solution x^* and a feasible dual solution y^* such that the objective values $c^T x^* b^T y^*$ are the same

b) A direction d with $Ad = 0$, $d \geq 0$ and $c^T d < 0$ and the optimal value is $-\infty$ (the LP is unbounded).
Strong duality in non degenerate case

Theorem 2.7

Let $\min\{c^T x \mid Ax = b, x \geq 0\}$ be a linear program with nonempty feasible set such that no feasible basic solution is non degenerate. If the LP is bounded, then there exists an optimal solution x^* and an optimal solution y^* of the dual LP $\max\{b^T y \mid A^T y \leq b\}$ and the objective values are the same

$$c^T x^* = b^T y^*.$$
If LP is degenerate

Cycling

If the LP is degenerate then it can happen that a simplex iteration does not improve the objective function value. Argument from before thus does not apply. In fact, it can happen (if one does not follow an adequate rule) that the simplex method cycles.

Bland’s pivoting rule

Among all variables with negative reduced costs, choose the smallest one. Among all the variables which then can exit the basis, choose the smallest one.

Theorem 2.8

If one uses Bland’s rule, the simplex method always terminates.
Theorem 2.9

Let \(\min\{c^T x \mid Ax = b, \ x \geq 0\} \) be an LP in standard form. If LP is feasible and bounded, then also the dual LP \(\max\{b^T y \mid A^T y \leq c\} \) is feasible and bounded and there exist optimal solutions \(x^* \) and \(y^* \) of the primal resp. dual with \(c^T x^* = b^T y^* \).

Proof

Simplex terminates if it uses Bland’s rule. The reduced cost of \(B \) yield optimal solution \(y^* = A_B^{-1} c_B \) of the dual LP (of LP).
Comments on the efficiency of Simplex method

- Simplex method is in practice very efficient
- Yet, there exist examples on which simplex is essentially as inefficient as the naive algorithm for linear programming
- However, these examples are somewhat pathological
- A recent exiting theory that gives a precise meaning to the terminology “pathological” from above is the theory of smoothed analysis
Comments on Phase 1 and Phase 2

- In our development of the simplex method, we assume that we start with feasible basis.
- How to find such a basis?: With a first phase of the simplex problem that runs on an auxiliary problem.
- The simplex method has two phases. We treated the second in greater detail. More details can be found in the textbook or in any other textbook on linear programming.
Summary of this and last lecture

Primary objectives:

- Linear programming: Example, Definition ✔
- The standard form ✔
- Basic feasible solutions ✔
- Simplex algorithm ✔
- Along the way: Develop your own toy-solver in C++ next programming exercise!
- Use of modeling languages and efficient LP-solvers
- Constructing dedicated bond-portfolio
Programming exercise (4P)

- Implement the simplex algorithm in C++
- Your code should be able to solve LPs in standard form where an initial feasible basis is known
- You can use the files Matrix.h and Vector.h again that you find here and that now contain some additional features. See also the file example.cc in this directory
- Due date is October 7, 2009.