Assignment Sheet 9
December 1, 2016

Exercise 1
The Gamma function if defined as \(\Gamma(x) = \int_0^\infty r^{x-1}e^{-r}dr \) for \(x > 0 \). Prove that

1. \(\Gamma(x + 1) = x\Gamma(x) \).
2. \(\Gamma(n) = (n - 1)! \) for positive integer \(n \).

Exercise 2
Prove the missing step in the computation of \(v_n \), the volume of the ball \(B^1_n \), from the lecture. Namely show that

\[
\int_0^{\infty} nR^{n-1}e^{-R^2/2}dR = 2^n \Gamma\left(\frac{n}{2} + 1 \right)
\]

Exercise 3 [⋆]
Let \(A, B \subseteq \mathbb{R}^n \) be convex sets. Show the following equality of sets (in \(\mathbb{R}^{n+1} \)).

\[
\text{conv} \left(([0] \times A) \cup ([1] \times B) \right) = \bigcup_{t \in [0,1]} \left[[t] \times ((1-t)A + tB) \right].
\]

Exercise 4
Let \(A \subseteq \mathbb{R}^n \) be a brick set consisting of at least two bricks. Show that there exist a canonic unit vector \(e_i \in \mathbb{R}^n \) and \(b \in \mathbb{R} \) and two bricks \(B_1, B_2 \in A \) s.t. \(e_i^T x \leq b \) for all \(x \in B_1 \) and \(e_i^T x \geq b \) for all \(x \in B_2 \). That is, show there exists a hyperplane that separates two bricks of \(A \) completely.