Popular matchings

Linda Farczadi

linda.farczadi@epfl.ch

The input is a graph $G = (V, E)$ where each vertex $v \in V$ ranks its neighbours in a strict order of preference. A matching M is a set of edges no two of which share an endpoint.

For any two matchings M and M' we say that vertex u prefers M to M' if u is either matched in M and unmatched in M' or matched in both and prefers its partner in M to its partner in M'. If u is unmatched in both matchings, or matched to the same partner then we say that u is indifferent between M and M'.

Then given any two matchings M and M' we can have an election between them by having each vertex vote for the matching that it prefers. Vertices that are indifferent do not cast a vote. If M' receives strictly more votes than M we say that M' won the election and M lost the election.

Definition. A matching M is popular if it does not lose an election against any other matching M' of G.

It can be shown that every stable matching is a popular matching, meaning that popular matchings are a generalization of stable matchings. In particular a stable matching is a popular matching of minimum cardinality. Since a bipartite graph always admits a stable matching, popular matchings always exist in this case. Moreover, if G is bipartite then there exists a polynomial time algorithm that finds a maximum cardinality popular matching [2].

In this project, we are interested in studying popular matchings in non-bipartite graphs. In particular we are interested in the complexity of the following open problem.

Open Problem 1. Let G be a non-bipartite graph. Does G admit a popular matching?

For non-bipartite graphs stable matchings do not always exists, and there is a polynomial-time algorithm that finds a stable matching whenever it exists. This leads us to the second open problem.

Open Problem 2. Let G be a non-bipartite graph that admits a stable matching. Find a popular matching of maximum cardinality.

Note that given a matching M, one can test in polynomial-time whether M is popular [1].

References
